
The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-
Negative Bacteria

Xian-Zhi Li,a Patrick Plésiat,b Hiroshi Nikaidoc

Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canadaa; Laboratoire de Bactériologie, Faculté
de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, Franceb; Department of Molecular and Cell Biology, University
of California, Berkeley, California, USAc

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339
BIOCHEMISTRY AND GENETICS OF MULTIDRUG EFFLUX PUMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339

Classes of Efflux Pumps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339
RND Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340

AcrB of Escherichia coli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340
Other RND transporters in E. coli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347

MFS Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347
ABC Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348
SMR Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348
MATE Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349

SYNERGY WITH THE OUTER MEMBRANE BARRIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349
Pathways of Drug Influx across the OM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349
Drugs Traversing the OM Mainly through Porin Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350
Drugs Traversing the OM through the Lipid Bilayer Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351

GAMMAPROTEOBACTERIA: ENTEROBACTERIACEAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351
E. coli. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351

Fluoroquinolones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352
�-Lactams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352
Other drugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353

Salmonella spp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353
Citrobacter spp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353
Enterobacter aerogenes and Enterobacter cloacae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .354
Klebsiella pneumoniae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .354
Proteus, Providencia, and Morganella spp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356
Serratia marcescens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356
Shigella flexneri. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356
Yersinia enterocolitica and Yersinia pestis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356

OTHER GAMMAPROTEOBACTERIA: VIBRIO, AEROMONAS, LEGIONELLA, AND PASTEURELLACEAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357
Vibrio spp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357
Aeromonas spp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357
Legionella spp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357
Pasteurellaceae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358

Pasteurella multocida. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358
Haemophilus influenzae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358

GAMMAPROTEOBACTERIA: PSEUDOMONAS, ACINETOBACTER, AND STENOTROPHOMONAS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358
Pseudomonas aeruginosa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358

OM permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358
RND efflux pumps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358

(continued)

Published 18 March 2015

Citation Li X-Z, Plésiat P, Nikaido H. 18 March 2015. The challenge of efflux-
mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev
doi:10.1128/CMR.00117-14.

Address correspondence to Hiroshi Nikaido, nhiroshi@berkeley.edu.

Copyright © 2015, American Society for Microbiology. All Rights Reserved.

doi:10.1128/CMR.00117-14

crossmark

April 2015 Volume 28 Number 2 cmr.asm.org 337Clinical Microbiology Reviews

http://orcid.org/0000-0003-1722-3254
http://dx.doi.org/10.1128/CMR.00117-14
http://dx.doi.org/10.1128/CMR.00117-14
http://crossmark.crossref.org/dialog/?doi=10.1128/CMR.00117-14&domain=pdf&date_stamp=2015-3-18
http://cmr.asm.org


(i) MexAB-OprM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358
(ii) MexXY-OprM(OprA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359
(iii) MexCD-OprJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .360
(iv) MexEF-OprN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361
(v) Other RND pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361

Acinetobacter spp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361
OM permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361
RND efflux pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362
Non-RND efflux pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362

Stenotrophomonas maltophilia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363
ALPHAPROTEOBACTERIA: BRUCELLA, BARTONELLA, AND RICKETTSIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363

Brucella spp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .364
Bartonella spp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .364
Rickettsia spp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .364

BETAPROTEOBACTERIA: ACHROMOBACTER, BURKHOLDERIA, AND NEISSERIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .364
Achromobacter spp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .364
Burkholderia spp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .364
Neisseria spp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .365

EPSILONPROTEOBACTERIA: CAMPYLOBACTER AND HELICOBACTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .365
Campylobacter spp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366
Helicobacter spp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366

BACTEROIDACEAE AND PREVOTELLACEAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .367
DRUG EFFLUX GENES ON PLASMIDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .367
REGULATION OF MUTLIDRUG EFFLUX PUMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .369

E. coli Efflux Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .369
AcrAB-TolC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .369
Regulation of other pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .371

Salmonella Efflux Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .371
K. pneumoniae Efflux Pumps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .371
P. aeruginosa Efflux Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .372

MexAB-OprM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .372
MexXY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .373
Other Mex pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .375

A. baumannii Efflux Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .375
S. maltophilia Efflux Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376
Neisseria Efflux Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376
C. jejuni Efflux Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376

ROLE OF EFFLUX PUMPS IN BIOFILM FORMATION AND RESISTANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376
INVOLVEMENT OF MUTLIDRUG EFFLUX PUMPS IN OTHER FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377

Bacterial Stress Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .378
Fitness, Colonization, and Virulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .378

Enteric bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .378
P. aeruginosa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .379
Other bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .380

MULTIDRUG EFFLUX PUMPS AS A CHALLENGE IN DRUG DEVELOPMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .380
EFFLUX PUMP INHIBITORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .381

PA�N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .381
NMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .383
D13-9001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .384
MBX2391 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .384
Other Compounds That Inhibit RND Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .385

METHODOLOGICAL CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .386
CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387
ACKNOWLEDGMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387
ADDENDUM IN PROOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387
AUTHOR BIOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .418

SUMMARY

The global emergence of multidrug-resistant Gram-negative
bacteria is a growing threat to antibiotic therapy. The chromo-
somally encoded drug efflux mechanisms that are ubiquitous
in these bacteria greatly contribute to antibiotic resistance and
present a major challenge for antibiotic development. Multi-
drug pumps, particularly those represented by the clinically
relevant AcrAB-TolC and Mex pumps of the resistance-nodu-
lation-division (RND) superfamily, not only mediate intrinsic

and acquired multidrug resistance (MDR) but also are in-
volved in other functions, including the bacterial stress re-
sponse and pathogenicity. Additionally, efflux pumps interact
synergistically with other resistance mechanisms (e.g., with the
outer membrane permeability barrier) to increase resistance
levels. Since the discovery of RND pumps in the early 1990s,
remarkable scientific and technological advances have allowed
for an in-depth understanding of the structural and biochem-
ical basis, substrate profiles, molecular regulation, and inhibi-
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tion of MDR pumps. However, the development of clinically
useful efflux pump inhibitors and/or new antibiotics that can
bypass pump effects continues to be a challenge. Plasmid-
borne efflux pump genes (including those for RND pumps)
have increasingly been identified. This article highlights the
recent progress obtained for organisms of clinical significance,
together with methodological considerations for the character-
ization of MDR pumps.

INTRODUCTION

Antibiotic resistance has emerged as a major threat to public
health in this century, as evident from global surveillance data

(1). Indeed, with the ancient origin and widespread presence of
diverse resistance genes (2, 3), the modern evolution of resistance
has led to the global emergence and spread of a large number of
resistant bacteria that possess sophisticated genotypes and pheno-
types against antibiotics. This phenomenon is a consequence of
the natural selection process in microorganisms and promotion
by human activities over the past 70 years of the antibiotic era (4,
5). In 2013, the U.S. Centers for Disease Control and Prevention
(6) listed current resistance threats, of which multidrug-resistant
Gram-negative bacteria constitute a large proportion (e.g., Enter-
obacteriaceae, Acinetobacter, and Pseudomonas). Of the various
molecular and biochemical mechanisms of resistance to antibiot-
ics, active efflux of antibiotics in bacteria plays an important role
in both intrinsic and acquired multidrug resistance (MDR) of
clinical relevance. It also interplays with other resistance mecha-
nisms, such as the membrane permeability barrier, enzymatic in-
activation/modification of drugs, and/or antibiotic target chang-
es/protection, in significantly increasing the levels and profiles of
resistance.

Energy-dependent drug efflux was discovered in the 1970s, ini-
tially with P-glycoprotein in mammalian cells (7) and later with
Tet proteins in Escherichia coli isolates resistant to the specific
antibiotic class tetracyclines (8). The subsequent discovery in the
early 1990s of MDR pumps in E. coli and Pseudomonas aeruginosa,
represented by the resistance-nodulation-division (RND) super-
family exporters (9–13), has made an important contribution to
our understanding of resistance mechanisms (14). Since then,
with rapid technological advances in biochemistry and molecular
biology, there have been ever-growing identification and charac-
terization of MDR pumps in numerous bacterial species of public
health concern (e.g., in the ESKAPE [Enterococcus faecium, Staph-
ylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
P. aeruginosa, and Enterobacter species] pathogens), which com-
pellingly demonstrate their predominant role in clinical settings
(15, 16). Meanwhile, efforts of scientists led to the understanding
of not only the structural and functional basis of these drug trans-
porters but also their regulation and inhibition. In this review, we
aim to provide a comprehensive and up-to-date description of
efflux-mediated antibiotic resistance in Gram-negative bacteria.

BIOCHEMISTRY AND GENETICS OF MULTIDRUG EFFLUX
PUMPS

Classes of Efflux Pumps

Because there are so many different efflux transporters, the only
feasible way for their classification is to use phylogenetic grouping,
based on protein sequences. Such a classification for all trans-
porter proteins has been established by Milton Saier’s group

(17–19) and is available in the Transporter Classification Database
(http://www.tcdb.org/). Transporter genes in hundreds of se-
quenced bacterial genomes are classified in Ian Paulsen’s database
(20) for each of these genomes (http://www.membranetransport
.org/). Among many families of transporters, several contain
prominent members of efflux transporters: especially important
in bacteria are the RND, MFS (major facilitator superfamily),
MATE (multidrug and toxic compound extrusion), SMR (small
multidrug resistance), and ABC (ATP-binding cassette) super-
families or families. ABC transporters utilize ATP hydrolysis as the
energy source, but all others are dependent on proton motive
force and are thus secondary transporters or proton/drug anti-
porters.

The transporters also differ in their subcellular organization.
The RND pumps, which are all exporters of drugs and toxic cat-
ions, are located in the inner membrane (IM) (cytoplasmic mem-
brane) but must interact with the periplasmic adaptor protein
(also called membrane fusion protein) and the outer membrane
(OM) channel, thus producing a tripartite complex spanning the
IM, the periplasm, and the OM (represented by E. coli AcrAB-
TolC and P. aeruginosa MexAB-OprM) (see the multicomponent
pump depicted in Fig. 1). Some members of the ABC superfamily
(e.g., MacB), the MATE family (e.g., MdtK), and even the MFS
(e.g., EmrB) (all from E. coli) also are organized in this manner.
The tripartite transporters excrete drugs directly into the external
medium so that the reentry of drugs requires the slow traversal of
the OM, an effective permeability barrier (21, 22). For this reason,
these pumps are far more efficient in creating detectable resistance
to antibiotics (especially AcrB, a constitutive RND transporter of
E. coli [9]) (see Gammaproteobacteria: Enterobacteriaceae, be-
low). In contrast, the pumps that are not organized in this manner
and exist as single-component or “singlet” pumps in the IM (Fig.
1), including the vast majority of MFS and SMR pumps, are less
effective in producing a detectable decrease in susceptibility, be-
cause the drug molecules are excreted only into the periplasm and
can spontaneously diffuse back into the cytosol, since most anti-
biotics are relatively lipophilic molecules that can cross the phos-
pholipid bilayer region of the IM. However, RND pumps, which
are thought to capture antibiotics mostly from the periplasm (23,
24), can collaborate with the singlet pumps and thus increase their
efficacy (25, 26).

The most detailed information on the contribution of various
pumps to drug susceptibility is available for E. coli K-12, and Table
1 lists data on known and predicted multidrug pumps identified in
the Transporter Classification Database mentioned above. An ob-
vious way to detect the contribution of individual pumps is to
measure the MICs of drugs in defective mutants. This was done in
2001 by Sulavik and coworkers (27) and showed that the RND
transporter AcrB (in cooperation with its periplasmic and OM
partners AcrA and TolC) plays a truly predominant role in raising
the MIC levels in a wild-type strain. This also creates a problem
because deletion of other pumps rarely produces detectable
changes in MICs in the presence of the active AcrB-AcrA-TolC
system. A similar problem was reported in a study (28) examining
the MIC values of nearly 4,000 deletion mutants of all nonessential
E. coli genes (the “Keio collection” [29]). Thus, although that
study showed that the functions of many metabolic genes have an
unsuspected influence on drug sensitivity, in terms of transporter
genes, it essentially identified the effect of only the acrAB-tolC
complex and nothing else. One possible exception is the deletion
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of the ycdZ gene, which produced hypersusceptibility to tetracy-
cline and may code for an exporter. However, this conclusion is
not supported by a study from the Carol Gross group, who quan-
titated the growth phenotype of the same set of mutants in the
presence of sub-MICs of various drugs (30). This approach is
more sensitive than the determination of MIC values and, indeed,
as presented in Table 1, showed that the deletion of practically all
known and suspected pumps produces hypersusceptibility to at
least one agent tested. These results, however, must be interpreted
with care, since this approach is very sensitive and could produce
false-positive results in spite of efforts to avoid them (Table 1).

A completely different approach is the plasmid-based over-
expression of putative efflux genes. This analysis by Nishino
and Yamaguchi (31) indeed detected efflux activity in those
genes whose activity was difficult to detect by deletion-based
approaches. However, these data do not tell us whether the
pumps are functioning in the wild-type or even mutant cells,
although the level of expression of most pumps can be in-
creased by regulatory signals (see Regulation of Multidrug Ef-
flux Pumps, below).

Reviews describing various types of efflux pumps include
those written by Poole (32, 33), Piddock (34–36), Paulsen et al.
(37), Saier and others (38), Van Bambeke and others (39), and
Higgins (40). A review by Alekshun and Levy (41) is useful, as
it also emphasizes the contribution of nonefflux mechanisms of
resistance.

RND Transporters

AcrB of Escherichia coli. The constitutively expressed pump AcrB
of Escherichia coli plays a major role in raising the MICs of most
antibiotics, due mostly to the fact that it exists as the AcrB-AcrA-
TolC tripartite complex so that the exported drug molecules end
up in the external medium, not in the periplasm, and thus cannot
easily reenter the cells except by crossing the effective OM perme-
ability barrier (24). Therefore, the effectiveness of RND pumps is
intimately tied to the strength of the OM barrier; permeabilizing
the OM destroys the effect of RND pump-mediated efflux almost
as effectively as the inactivation of the pump itself (42, 43). Avail-
able reviews on RND pumps include those emphasizing the struc-
ture and mechanism (24, 44–49), computational approaches (50),
roles in solvent tolerance (51), and functions other than drug re-
sistance (34, 52–54).

AcrB has been studied most intensively as the prototype of
RND pumps. It has an extremely wide specificity, including prac-
tically all types of antibacterial agents (except aminoglycosides),
detergents, microbicides, dyes (Table 1), free fatty acids (55), and
even simple solvents (56). In a reconstitution assay (57), AcrB was
shown to also extrude modified phospholipids. A common prop-
erty of these AcrB substrates is the presence of a hydrophobic
domain (24, 58). Such a wide specificity appeared surprising at
first. However, as pointed out by Neyfakh (59), this may be ex-
pected. Thus, when a typical soluble enzyme captures its hydro-

FIG 1 Location of drug efflux pumps and pathways of drug influx and efflux across the OM and IM in Gram-negative bacteria. The influx of drugs (shown as
pills) through the OM occurs in one or more of the following three pathways: porin channels (e.g., OmpF of E. coli and OprF of P. aeruginosa), specific protein
channels (e.g., CarO of A. baumannii and OprD of P. aeruginosa for carbapenems), and the LPS-containing asymmetric lipid bilayer region. After their entry into
the periplasmic space, the drug molecules can further penetrate the IM via diffusion. However, these drugs can be extruded out of the cell by efflux transporters,
which exist as either single-component pumps (“singlet”; e.g., Tet pumps) or multicomponent pumps (e.g., AcrAB-TolC and MexAB-OprM tripartite efflux
systems that each typically contain a pump, an OM channel protein [OMP], and an accessory membrane fusion protein [MFP]). While the singlet pumps may
take up the drug from the cytosol and the periplasm and function with porins or other types of protein channels to make the efflux process effective, the
multicomponent exporters capture their substrates from the periplasm and the IM and directly pump them into the medium. The competition between the influx
and efflux processes ultimately determines the steady state of drug molecules in bacterial cells. With the lipophilic drug molecules that cross the OM slowly or the
hydrophilic drugs that penetrate the A. baumannii/P. aeruginosa low-permeability porins (i.e., “slow porins”), the efflux mechanism become very effective, thus
being able to yield MDR. In contrast, with the less hydrophobic and smaller drug molecules that can rapidly penetrate, for example, E. coli porins, efflux is not
effective to counteract drug influx, thus hardly decreasing the concentrations of the drug in the cell.
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philic substrate from the aqueous medium, the process requires
the removal of the substrate molecule, already stabilized by its
numerous hydrogen-bonding interactions with the surrounding
water. Stable binding in the binding site of the enzyme therefore
must involve precise, strong interactions with the residues in the
site, in order to overcome this energy barrier, and it requires that
the site is small and carefully designed to bind stringently only one
substrate species. However, with the multidrug pumps that cap-
ture drugs with sizeable hydrophobic domains, the drugs are not
strongly stabilized in the aqueous environment, as their presence
involves a large entropic cost accompanying the ordering of the
surrounding water molecules. Hence, the drug binding to the
transporter does not require the binding site to be small, tight, and
stringent. It can be very large and can thus accommodate a large
range of substrates with small decreases in the binding free energy.

For biochemical studies of any transporters, transport studies
of membrane vesicles are usually the preferred approach. Never-
theless, with AcrB, this approach was not fruitful, presumably
because most of the ligands transported are lipophilic and cannot
be accumulated in the intravesicular space due to their readiness
in crossing the phospholipid bilayer domain of the membrane. It
is also possible that the absolute rate of transport does not need to
be high because of the presence of the OM barrier, and this im-
pedes the detection of transport in vesicles. Thus, the first major
advance had to rely on the reconstitution of purified AcrB into
proteoliposomes, accomplished by Zgurskaya and Nikaido in
1999 (57). In order to circumvent the problem of the spontaneous
diffusion of most ligands across the lipid bilayer, this study used an
innovative approach relying on the efflux of fluorescently labeled
phospholipids into empty “acceptor” vesicles and detected the
efflux of conventional ligands through competition with phos-
pholipid efflux. In this way, drugs such as cloxacillin, erythromy-
cin, novobiocin, and fusidic acid (but curiously not chloramphen-
icol) as well as various bile acids were shown to compete against
phospholipid efflux. Furthermore, the half-maximal concentra-
tion for inhibition was lowest for bile acid taurocholate (�15
�M), suggesting that the properties of AcrB were optimized for
the exclusion of bile salts, major toxic components in the mam-
malian intestine, the normal habitat for E. coli. Interestingly, the
addition of AcrA to the aqueous phase (in the presence of Mg2�)
strongly stimulated phospholipid transport: because lipids had to
be transported from one vesicle to another, we hypothesized that
AcrA may act by bringing the two vesicles together. This approach
also established that AcrB was a proton/drug antiporter, as the
transmembrane pH gradient was dissipated accompanying the
flux of ligands.

A similar reconstitution assay was successfully used for E. coli
AcrD (23), an AcrB homolog that also works with AcrA and TolC
as a tripartite transporter. This study is important, as AcrD trans-
ports aminoglycosides, which are very hydrophilic and not ex-
pected to diffuse spontaneously across the lipid bilayer. Thus, a
conventional accumulation assay using radiolabeled aminoglyco-
sides indeed proved their accumulation in proteoliposomes.
When streptomycin was added as the substrate to either the more
acidic, intravesicular space corresponding to the periplasm or the
more alkaline external space corresponding to the cytosol, pump-
ing activity (as detected by the flux of protons) was observed only
in the former case, showing clearly that the pump captures its
substrate only in the periplasm. Although other aminoglycosides
appeared to stimulate the pump activity even when added to the

external space, the activities were rather weak, and it seems likely
that AcrD (and possibly also other RND pumps) at least prefers to
capture its substrates from the periplasm. Interestingly, the addi-
tion of AcrA was necessary for the function of AcrD. Because the
assay does not require the juxtaposition of vesicles, AcrA is likely
to stimulate directly the function of AcrD (and AcrB) by simply
binding to the transporter.

Since reconstitution assays are quite cumbersome, methods for
quantitative, real-time determination of pumping activity in in-
tact cells were needed. Fluorescent probes [e.g., N-phenyl-1-
naphthylamine, ethidium bromide, and 2-(4-dimethylamino)s-
tyryl-N-ethylpyridinium iodide] were preloaded into bacterial
cells deenergized by uncouplers, and efflux was monitored by flu-
orescence after reenergization by adding an energy source, such as
glucose (60, 61). It is difficult to perform assays of this type in a
reproducible manner because some uncouplers remain after re-
energization. An optimized, semiquantitative method for E. coli
using the fluorescent dye Nile red was reported in 2010 (62). A
major step in the intact-cell assay of AcrB was the real-time assay
of cephalosporin efflux in E. coli achieved by Nagano and Nikaido
in 2009 (63). Those authors measured spectrophotometrically
cephalosporin hydrolysis in intact cells by a periplasmic �-lacta-
mase. By comparing the hydrolysis rate with the Vmax and Km of
the enzyme, those authors calculated the periplasmic concentra-
tions of the cephalosporins, overcoming the most serious prob-
lems in intact-cell assays of efflux. They then obtained the ex-
pected influx rate (Vin) of the drug across the OM from the
permeability coefficient obtained from uncoupler-poisoned cells
and from the difference in the external and periplasmic concen-
trations of the drug. The difference between Vin and the observed
hydrolysis rate then corresponds to the rate of efflux. When the
efflux rate of nitrocefin was plotted against the periplasmic con-
centrations, a Michaelis-Menten-type saturation curve was ob-
tained, showing the Vmax (0.024 nmol/mg/s) and Km (5 �M) of the
AcrB-catalyzed efflux process for the first time. Since the expres-
sion of AcrB was increased severalfold in the strain used, we esti-
mate that the Vmax is �6 pmol/mg/s in wild-type E. coli K-12. This
assay was used with conventional cephalosporins and penicillins
(63–65); one surprising finding was that a sigmoidal kinetics was
often observed in the plots of velocity versus periplasmic drug
concentration, suggesting positive cooperativity. Recently, a sig-
moidal kinetics was observed for the AcrB-catalyzed efflux of a
compound of a very different nature, L-arginine-�-naphthylam-
ide (A. Kinana, A. V. Vargiu, and H. Nikaido, unpublished data),
indicating that this is a common feature of the AcrB-catalyzed
transport process.

A major advance in the study of AcrB was made when Mu-
rakami et al. (66) solved the crystal structure of trimeric AcrB in
2002. This symmetric structure showed that each protomer of
AcrB contained a large periplasmic domain, as predicted from the
primary sequence. Furthermore, the periplasmic domain was seen
to have a large cleft facing the surrounding periplasm. Although
binding of ligands to the area close to the cleft was shown by
cocrystallization (67–69), this observation did not immediately
suggest the mechanisms of drug extrusion (see below). The next
big advance in our understanding of AcrB structure and function
came with crystallographic analysis of the asymmetric trimer
structure, where each protomer takes a unique conformation
slightly different from that of its neighbor, elucidated in three
laboratories (Fig. 2) (70–72). The work by Murakami and co-
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workers (70) was especially important, because they succeeded in
cocrystallizing AcrB with the substrate minocycline or doxorubi-
cin. In both cases, the substrates were seen in a predominantly
hydrophobic pocket within the periplasmic domain, now called
the distal binding pocket, close to the center of the trimer and
located in one particular protomer, called the binding protomer.
The presence of three conformationally different protomers, the
access, binding, and extrusion protomers (Fig. 2) (44), suggested a
functionally rotating mechanism, in which each protomer goes
through a succession of conformational alterations. The distal
binding pocket becomes collapsed in the extrusion protomer,
consistent with the movement of the drug to the exit gate close to
the end of the TolC channel. This concept of conformational cy-
cling or functional rotation was then substantiated by the finding
that disulfide cross-linking of nearby residues, although appar-
ently occurring in only one or two protomers, nearly completely
inactivated the trimeric complex (73). (The AcrB homolog MexB
of P. aeruginosa has been crystallized without [74] and with [75]
an added inhibitor, a pyridopyrimidine derivative.) In a similar
vein, when the AcrB trimer was produced as a covalently linked
single protein, and only one protomeric unit was inactivated in the
proton translocation pathway, the entire trimeric complex be-
came inactive (76). Furthermore, when the Cys residues were in-
troduced into only one of the protomeric units, their cross-linking
immediately inactivated the function of AcrB trimers, showing
that inactivation was not due to a failure of the trimeric assembly.

More recently, two laboratories (77, 78) showed that large sub-

strates such as macrolides, rifampin, and a dimer of doxorubicin
bind to a more proximal binding site in the access protomer, pre-
sumably before their eventual movement to the distal pocket con-
comitant with the conformational change of the protein into the
binding protomer. Interestingly, this proximal binding site sur-
rounded by residues Asp566, Phe664, Phe666, Glu673, Arg717,
and Asn719 overlaps mostly the periplasmic binding site identi-
fied by Yu and collaborators several years earlier (67) in a symmet-
ric AcrB crystal structure. Yu and associates further showed the
importance of this binding site by site-directed mutagenesis, find-
ing that a Phe666Ala mutation, for example, results in a drastic
decrease of resistance to a wide range of substrates (67). The in-
volvement of residues surrounding this site was also shown by the
fact that their Cys-substituted mutants were strongly labeled by an
AcrB substrate, boron-dipyrromethene (BODIPY)-maleimide
(79). Another symmetrical crystal structure containing a substrate
at this position has a deoxycholate molecule (80). The importance
of this proximal binding pocket was further emphasized by recent
studies (81, 82). The preference of AcrD for �-lactams containing
multiple anionic groups, such as carbenicillin, sulbenicillin, and
aztreonam, is essentially due to the residues within the proximal
pocket (81), while a region in the MexY aminoglycoside pump
that corresponds to a proximal binding pocket of AcrB plays a role
in aminoglycoside recognition and export (82).

Yet another binding site for drugs was identified within the
central cavity of the trimer by cocrystallization (67, 83). Possibly,
the initial binding here is followed by the eventual translocation of

FIG 2 Drug transport mechanism of AcrB. Shown is the asymmetric crystal structure of AcrB (Protein Data Bank accession number 2DRD), viewed from outside
the cell, with the top portion cut off for clarity. Conformational cycling of 3 AcrB protomers, in access (blue), binding (red), and extrusion (green), is seen by
cocrystallization of AcrB with its substrate minocycline, shown in a yellow stick model.
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the substrates to the distal binding pocket, perhaps through the
“vestibules” between the protomers (84). Although the functional
significance of this binding site could not be ascertained by site-
directed mutagenesis, symmetric cocrystals of AcrB with drugs in
the central cavity have been reported for ampicillin (68) and lin-
ezolid (85).

Dastidar et al. carried out the first effort to use substrate com-
petition for covalent labeling of selected residues for the elucida-
tion of the path of the drug molecules within the large periplasmic
domain of AcrB (86). Some residues of Haemophilus influenzae
AcrB were converted to Cys and were labeled with fluorescein
maleimide. The labeling of Ala288Cys (corresponding to Gly290
of E. coli AcrB and close to the distal binding site) was decreased by
the presence of all substrates tested, except ethidium. We followed
up on this work by selecting 48 residues that lie on the presumed
path(s) of the drugs, converting each residue to Cys, and labeling
the Cys residue in intact cells with a hydrophobic, covalent-label-
ing probe, BODIPY-maleimide (79). Residues outside the pre-
dicted path were not labeled at all, even when they were located in
the middle of hydrophobic patches. In contrast, most of the tested
residues in the distal binding pocket were strongly labeled, as were
the residues lining the proximal pocket as well as the entrance and
the bottom of the large external cleft between two subdomains
(PC1 and PC2 [66]). Finally, by using bulky covalent-labeling re-
agents, with some residues, we have been able to “clog” the sub-
strate path so that the efflux of a substrate, Nile red, could be
blocked.

This study reinforced the importance of the drug binding to
the distal binding pocket as a major step in efflux. Site-directed
mutagenesis of Phe residues in this pocket (87) indicated that
these residues are important for efflux, with the Phe610Ala muta-
tion showing the most widespread effect on many substrates. A
molecular dynamics (MD) simulation study of this mutant pro-
tein (88) revealed that a substrate, doxorubicin, still bound to the
pocket with a strong affinity; the interpretation of these results is
described below. Site-directed mutagenesis based on the sequence
difference between AcrB and MexB, which show different profi-
ciencies in macrolide efflux, led to the discovery of the importance
of Gly616 in AcrB for this function (89); interestingly, this residue
is a part of the Gly-rich loop (also called the switch loop), which
separates the distal pocket from the proximal pocket (77) and is
thought to be critical for translocation of the substrates, especially
large molecules such as macrolides. More recently, Eicher et al.
showed the coupling of remote alternating-access transport
mechanisms for protons and AcrB substrates through a mecha-
nism involving two remote alternating-access conformational cy-
cles within each promoter (90).

Although these mutagenesis studies are valuable, they do not
tell us how various substrates bind to the AcrB transporter. As
stated above, only a few crystal structures of drug-AcrB complexes
are currently available. Thus, computational analysis of drug-
AcrB interactions was first initiated with the docking software
Autodock Vina (91). Various known substrates of AcrB, including
minocycline, docked to the upper part (closer to the exit gate) of
the distal binding site, which contains a characteristic crevice (Fig.
3). This is where minocycline and doxorubicin bound in the crys-
tal structures (70). Cefazolin, a nonsubstrate (63), gratifyingly did
not bind to the binding pocket. However, other substrates failed to
bind to this upper portion of the pocket; as an example, chloram-
phenicol and solvents such as cyclohexane were predicted to

“bind” with a significantly lower binding energy to the lower part
of the pocket, which we called a “cave” (Fig. 3) (91).

To get further insights into the binding-and-efflux process, we
examined potential competition between substrates. It had been
nearly impossible to show competition among substrates of AcrB
by using an MIC assay (92). Still, with a real-time efflux assay with
the dye Nile red, we showed that doxorubicin, minocycline, and
other tetracyclines as well as tetraphenylphosphonium, but not
chloramphenicol, macrolides, deoxycholate, nafcillin, or novo-
biocin, inhibited dye efflux (62). Also, when a real-time efflux
assay of nitrocefin (63) was used, we showed strong inhibition by
minocycline, predicted to bind to the upper part of the pocket, like
nitrocefin (91). In contrast, a substrate that is not predicted to
bind to this part of the pocket, i.e., chloramphenicol, did not in-
hibit nitrocefin efflux, and actually, there was some hint of stim-
ulation instead (91). The latter phenomenon is discussed in more
detail below.

Docking programs, however, have been optimized by using the
binding of small, hydrophilic substrates mostly to the binding sites
within enzymes. Binding of hydrophobic or amphiphilic ligands
to the large binding pockets of transporters is predicted to occur in
significantly different ways (59). Thus, we examined in detail the
binding of 9 substrates, 2 inhibitors, and 2 nonsubstrates to the
distal binding pocket of AcrB by extensive MD simulations (93).
This introduced two major improvements over the docking ap-
proach. First, water molecules now became a part of the system so
that the interaction of amphiphilic and more hydrophilic ligands
could be predicted in a much more realistic manner. Second, the
distal binding pocket is composed of residues that are on several
loop segments in a relatively loosely constructed area of the pro-
tein, so movement and rotations of the chains were expected. In-
deed, with many ligands, there was an extensive alteration in the
shape of the binding site to better accommodate diverse sub-
strates. Interestingly, some of those “cave binders” in the docking
approach left the lower area and were found to favor the upper
area of the pocket, although the binding appeared to be weak.

Chloramphenicol was found to slightly accelerate the efflux of
nitrocefin (91). This was confirmed by a subsequent careful study,
and it was found that solvents such as benzene or cyclohexane
produced much more pronounced stimulation of nitrocefin ef-
flux (94). MD simulations suggested that benzene interacts pri-
marily with the Phe-rich hydrophobic domain that comprises the
lower portion of the binding pocket and not with the upper sub-
pocket that binds minocycline or nitrocefin (94). Interestingly,
the lower portion of the binding pocket is where the hydropho-
bic part of the inhibitor D13-9001 binds tightly and was named
a “hydrophobic trap” by Nakashima et al. (75) (see Efflux
Pump Inhibitors, below). Furthermore, recent MD simulations
showed that other efflux pump inhibitors (EPIs), such as phenylal-
anine-arginine-�-naphthylamide (PA�N), 1-(1-naphthylmethyl)-pi-
perazine(NMP),andthenew,potent inhibitorMBX2319(95), all bind
tightly to the hydrophobic trap and thereby distort the shape of
the rest of the pocket, closing the crevice where minocycline or
nitrocefin becomes bound (96). These observations suggest the
following. (i) The distal binding pocket is very large, and different
ligands prefer different areas of the pocket for binding. Thus, a
“typical” substrate, like minocycline or nitrocefin, which has a
number of hydrophilic groups, tends to bind to the upper “crev-
ice” area, which is rich in hydrophilic and charged residues and
was indeed shown to be involved in substrate binding (93). In
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contrast, for hydrophobic ligands such as cyclohexane or chlor-
amphenicol, binding to this area is difficult. (ii) A tight interaction
with the hydrophobic trap distorts the structure of the crevice,
inhibiting the efflux of typical substrates. (iii) A loose interaction
with the hydrophobic trap, on the other hand, may enhance the
efflux of typical substrates, by either facilitating the interaction of
such substrates with the pocket, speeding up the sequence of con-
formational changes needed for the export of substrates, or both.
In any case, the interaction between the AcrB transporter and its
substrates/inhibitors/enhancers appears quite complex. In assess-
ing the binding of drugs to the pocket of transporters such as AcrB,
we now realize that binding follows the same principles elucidated
by the pioneering early crystallographic studies by Brennan and
coworkers (for example, see references 97 and 98), carried out by
using soluble regulators of MDR pumps, such as QacR, rather
than the pumps themselves.

Computer simulation has now become an important approach
for studying the mechanism of AcrB function. The movement of a
substrate, doxorubicin, from the distal binding pocket to a posi-
tion close to the exit gate, accompanying the closure of the pocket,
was shown by a targeted MD simulation (99). Large substrates,
found in the proximal binding pocket in AcrB cocrystals (77),
moved substantially in the direction of the distal binding pocket
during MD simulation (100). Movement of water molecules was
analyzed by simulation (101, 102), and coarse-grained models
were used to analyze the conformational transitions (103) as well
as the drug pathways (104) within AcrB.

After the binding of the substrate to the distal binding pocket in
the binding protomer, the proton(s) must come in from the
periplasm to bind to the Asp residue(s) in the transmembrane
domain, causing the conformation of the protein to change into
the extrusion protomer, thereby squeezing out the substrate to the
exit gate by the collapse of the pocket. Asp407 and Asp408 appear
to be essential for the energy transduction of AcrB, together with
Lys940 and Arg971 (105) as well as Thr978 (106). In the binding
protomer, both Asp407 and Asp408 appear to be deprotonated, as
the presumably protonated Lys940 side chain is situated between
the two Asp side chains. In the extrusion protomer, Lys940 is
moved away from the Asp residues and now faces the Thr978 side
chain (107). The carboxyl group of Asp408 was indeed shown to
have an unusually high pKa of 7.4, which would help in the facile
binding and release of the proton under physiological conditions
(107). A recent MD simulation study (108) suggests that in the
extrusion protomer, Asp408 becomes protonated, but Asp407 re-
mains deprotonated. In this scheme, the translocation of one pro-
ton across the IM would be sufficient to cause the conformational
changes in AcrB, resulting in the extrusion of the drug mole-
cule(s). The folding and assembly of the AcrB trimer were studied
mainly by Wei and associates, who showed that the folding of the
monomeric unit precedes trimerization (109) and analyzed the
function of a protruding loop that inserts deeply into the neigh-
boring subunit (110).

In 2007, when AcrB was crystallized without amplification
from E. coli, the symmetric crystals were found to contain a small

FIG 3 Interaction of drug substrates and the AcrB-binding protomer analyzed with Autodock Vina docking software. Substrates are shown to bind to either the
upper part (groove binder) (doxorubicin [A] and tetracycline [B]) or the lower part (cave binder) (chloramphenicol [C] and cyclohexane [D]) of the distal
binding site. (Modified from reference 91.)
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(110-residue) protein, YajC, associated with the transmembrane
domain (68). The yajC gene occurs in the secDF operon (111), but
the significance of this association is unclear. Deletion of yajC
appeared to make E. coli marginally more susceptible to penicillins
(68). Five years later, Hobbs et al. (112) found that a 49-residue
protein, renamed AcrZ, associates with the transmembrane do-
main of AcrB. Deletion of acrZ renders E. coli moderately more
susceptible to chloramphenicol and tetracycline. Importantly,
AcrZ expression is regulated in the same manner as that of AcrB,
by the global regulators MarA, SoxS, and Rob (see below).

AcrB functions as a member of the tripartite machinery includ-
ing the periplasmic adaptor protein AcrA and the OM channel
TolC. The structure of TolC, solved by the Koronakis group (113),
shows a trimer containing an OM-spanning �-barrel and a con-
tiguous, long, 12-stranded 
-barrel. Among the adaptor proteins,
the MexA structure was elucidated first (114). The AcrA structure
is similar (115), but only three domains (the long 
-hairpin, a
lipoyl domain, and a short �-barrel) were elucidated; the mem-
brane-proximal domain had to wait for work by Symmons and
others in 2009 (116). Those authors showed by chemical cross-
linking that the three domains other than the long 
-hairpin in-
teract closely with the periplasmic domain of AcrB. This suggested
that the remaining 
-hairpin domain was connected to the lower
part of the 
-barrel of TolC, completing the tripartite assembly.
The top of the periplasmic domain of AcrB was cross-linked to the
tip of the TolC 
-barrel (117), and a model of the tripartite com-
plex was proposed (116). This complex was shown to be stable
enough to withstand cell disruption (118). The interaction of
AcrA and other adaptor proteins with TolC has been studied by
surface plasmon resonance (119), and a similar approach with
immobilized AcrB showed that AcrB interacted with TolC, in the
absence of AcrA, with a relatively high affinity (KD [equilibrium
dissociation constant] of 90 nM) (120).

The number of AcrA molecules per assembly was uncertain in
early models. With MacA, another adaptor protein that functions
with the ABC transporter MacB (see below), a hexameric crystal in
which MacA forms a closed barrel was found (121). Because the
diameter of the end of this MacA barrel (composed of 
-hairpins)
was similar to the diameter of the 
-barrel of TolC, and because
the tip of the hairpin had amino acids that are conserved among
various adaptor proteins, it was proposed that MacB does not
directly touch the end of TolC and that the MacA tunnel acts as a
bridge between these two proteins (121). A cocrystal of the Cu
efflux RND pump CusA with its cognate adaptor protein CusB
(122) also shows that the top of the transporter trimer interacts
with the lower end of the CusB hexamer to form a channel that is
likely to allow the partial insertion of the 
-barrel domain of the
OM channel CusC. In this model, again, the end of the 
-barrel of
the OM channel is not in contact with the top of CusA. Finally, in
the recently reported electron micrographic structure of the AcrB-
AcrA-TolC complex elucidated by the use of an AcrB-AcrA fusion
protein, again, the top of AcrB is not in contact with the end of the
TolC channel (123). However, there is evidence that these two
domains are likely to come into contact in intact cells, as men-
tioned above, and it seems possible that the tripartite assembly is a
dynamic one that could become shorter during the efflux cycle, as
was suggested by Su and coworkers (122).

A rather close homolog of AcrB appears to exist in all members
of the Enterobacteriaceae and also in many other species (e.g.,
MexB in P. aeruginosa). The acrB gene forms an operon with the

acrA gene coding for the adaptor protein, and a similar arrange-
ment is common with other RND pumps and in other species,
especially in Enterobacteriaceae, where the OM component TolC,
also serving other transporters, is encoded elsewhere. In contrast,
in P. aeruginosa and A. baumannii, where each RND pump tends
to operate with its specific adaptor and OM channel, a three-gene
operon coding for all three components is more common (see
sections on Pseudomonas, Acinetobacter, and Stenotrophomonas,
below).

Other RND transporters in E. coli. AcrF appears to have a wide
substrate specificity, similarly to AcrB (124, 125). AcrD is an ami-
noglycoside efflux pump that works with AcrA and TolC (23).
MdtF (YhiV) is likely involved in the extrusion of toxic metabo-
lites during nitrosative stress, such as the nitrosyl derivative of
indole, produced during anaerobic growth of E. coli (126). MdtBC
is unusual because it contains two different transporter proteins,
MdtB and MdtC, and appears to function only as a B2C hetero-
trimer (127). When overexpressed, it pumps out norfloxacin, no-
vobiocin, cloxacillin, and deoxycholate (15, 31, 128). Site-directed
fluorescein maleimide modification studies suggest that MdtC
binds the substrate, but MdtB probably functions in other ways,
such as initiating the conformational alteration for drug efflux
(129).

MFS Transporters

MFS transporters can be classified into at least 74 families on the
basis of sequence homology (130). E. coli K-12 contains 70 MFS
transporters, 15 of which may be considered drug exporters, as
they belong to families 2 and 3 (http://www.membranetransport
.org/), which are composed of 12-TMS (transmembrane segment)
and 14-TMS members, respectively, of drug/H� antiporters (37,
130). Most of them, however, are free-standing transporters lo-
cated in the IM and transport drugs from the cytosol to only the
periplasm. Because most antimicrobial agents reach the cytosol
usually by diffusion across the membrane bilayer, the pumped-
out drug molecules have a good chance of reentering the cytosol
through this free-diffusion process, and the transporters of this
class are not expected to create high-level resistance. However,
constitutive RND pumps, such as AcrAB-TolC and MexAB-
OprM, may capture such pumped-out drug molecules in the
periplasm and thus synergistically enhance the activity of singlet
pumps in producing resistance (Fig. 1). This was first shown in P.
aeruginosa (25) and was rediscovered in E. coli nearly a decade
later (26). The latter study (26) also made an important point that
the contribution of some singlet pumps may have escaped detec-
tion because of overlapping specificities; thus, the double deletion
of an MFS pump, MdfA, and an SMR pump, EmrE, made E. coli as
susceptible as or even more susceptible than the AcrB deletion
mutant to cationic agents with intracellular targets, like acriflavine
or ethidium. This finding suggests that RND pumps are usually
rather inefficient in capturing drugs from the cytosol (although
some contrary views have been presented [131]) and that the sin-
glet pumps often play an important role in resistance to agents
with intracellular targets. The fact that the plasmid-encoded TetA
pump creates significant tetracycline resistance (8) suggests that
this synergistic mechanism can sometimes be quite effective.

Although the MFS-type MDR pumps usually do not play a pre-
dominant role in resistance, as described below, the singlet drug
pumps of the Tet group, usually plasmid encoded, are clinically
important in creating tetracycline-specific resistance in many bac-
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terial species. In the current nomenclature, TetA refers to the MFS
exporter, and the phylogenetic group to which it belongs is spec-
ified by the group within parentheses, as in TetA(B). Currently,
the 12-TMS TetA pumps, present in Gram-negative bacteria, con-
tain 13 phylogenetic groups, whereas the 14-TMS Tet pumps,
present in Gram-positive bacteria, contain at least 3 groups (132).
The plasmid-encoded TetA pumps were the first bacterial drug
efflux pumps identified (8, 133). Biochemical studies by the
Yamaguchi group showed that their substrate was the magnesium
salt of tetracycline (134), and cysteine-scanning mutagenesis fol-
lowed by labeling studies identified the residues important for
substrate binding and proton translocation (135). Interestingly,
the Gram-positive pumps Tet(K) and Tet(L) were found to trans-
port monovalent cations, such as Na�, and cation transport was
hypothesized to be the original function of such pumps (136).
Finally, glycylcyclines such as tigecycline were developed by select-
ing for derivatives that withstand the presence of Tet pumps and
are indeed poor substrates for these tetracycline-specific trans-
porters (137). However, tigecycline is a substrate for the RND
pumps of many species, including E. coli, such as AcrAB or AcrEF
(138).

A few MFS pumps, however, occur with their own periplasmic
adaptor proteins and with OM channels, such as TolC, and pre-
sumably produce an efficient tripartite efflux system. In E. coli,
these pumps include EmrB (occurring with the cognate adaptor
EmrA) and EmrY (with EmrK), which indeed appear to be in-
volved in the efflux of uncouplers and other substrates (Table 1)
(15, 31, 139, 140). Importantly, the crystallographic structure of
EmrD was determined (141). It is similar in general to those of the
other MFS transporters but has a larger central cavity surrounded
by hydrophobic and aromatic side chains. It was also noted that
the loops connecting H4 and H5, and H10 and H11, protrude into
the cytoplasm much more than in the inward transporters of the
MFS, such as LacY and GlpT, and that these loops may play a role
in substrate recognition and capture (141). A pH-dependent con-
formational change was also established for EmrD (142). EmrB
that occurs with the periplasmic adaptor EmrA appears to assem-
ble in vitro into a dimer of EmrAB dimers (143). If EmrA forms an
intermediary channel similar to the AcrA and CusB channels (see
above), perhaps the discrepancy between the trimeric TolC and
dimeric EmrB may not matter. Alternatively, the dimeric arrange-
ment could be an artifact of the in vitro assembly of the proteins.
The EmrA protein was shown to form dimers and trimers in vitro,
and interestingly, it bound an efflux substrate, carbonyl cyanide
m-chlorophenylhydrazone (CCCP) (a proton uncoupler), with a
reasonable affinity (KD of �1 �M) (144).

Among the singlet MFS transporters, MdfA, which confers
MDR when overproduced (145), has been studied extensively in
terms of biochemistry (146). However, its clinical relevance re-
mains unknown, although it plays a major role with the SMR-
type transporter EmrE in the efflux of cationic dyes (and pre-
sumably other cationic agents, such as quaternary ammonium
compounds) (26).

ABC Transporters

In fungi and animal cells, most of the transporters involved in
drug efflux belong to the ABC family (7, 147). In Gram-negative
bacteria, there are only few examples of ABC family drug efflux
pumps, although MsbA, the exporter of biosynthetic intermedi-
ates of lipopolysaccharide (LPS), was shown to pump out drugs,

including erythromycin, when overexpressed in Lactococcus lactis
(148).

The best-studied bacterial ABC drug exporter is MacB of E. coli,
which functions together with the periplasmic adaptor MacA and
the OM channel TolC (149). MacAB-TolC raises macrolide MIC
values when overproduced (149). The isolated MacB shows only
trace ATPase activity, which is not stimulated by substrates. How-
ever, ATP hydrolysis is very strongly stimulated by the simultane-
ous presence of MacA (150); these results were confirmed by an-
other laboratory (151), which showed that MacB is a dimer, as
expected for an ABC transporter. Finally, an analysis using surface
plasmon resonance led to the conclusion that MacA binds to
MacB with a nanomolar affinity, and the complex remains stable
during the ATP hydrolysis cycle (152); the authors of this study
assume that the MacA channel connects a TolC trimer and a MacB
dimer, with no direct connection between the latter two. The ex-
pression of the MacAB system is stimulated by the heat shock
sigma factor �32 (153). Its physiological function might be related
to the export of LPS or its biosynthetic intermediate (154).

SMR Transporters

The proton-motive force-driven SMR transporters belong to the
drug/metabolite transporter (DMT) superfamily and are very
small, each containing only four TMSs. Thus, unlike MFS trans-
porters, which presumably function as monomers, SMR trans-
porters, which typically exchange incoming H� with the pumping
out of either monocationic (ethidium and tetraphenylphospho-
nium, etc.) or dicationic (e.g., paraquat) compounds (155), must
function as a dimer. They also appear to decrease susceptibility to
aminoglycosides when the proteins are overproduced from plas-
mids (156). However, there was controversy on the issue of
whether this was a parallel dimer in which each component
monomer was embedded in the same direction within the bilayer
or an antiparallel dimer. A crystallographic study clearly shows the
antiparallel arrangement within an EmrE dimer (157), but chem-
ical cross-linking favors a parallel arrangement, and it appears that
the direction of insertion of the monomeric unit really does not
matter for the efflux function (158).

EmrE is one of just a few transporters that produce a drug-
hypersusceptible phenotype when the gene is deleted in wild-type
E. coli still containing AcrAB (Table 1). One of the characteristic
substrates of EmrE is a quaternary ammonium compound, in-
cluding the endogenous osmoprotectant of E. coli, betaine (159),
and thus, EmrE overproduction makes cells more susceptible to
hyperosmolarity conditions as well as alkaline-pH media. Using
these phenotypes, one study found that OmpW, an OM protein,
apparently helps in the removal of such compounds pumped into
the periplasm by EmrE (160). This is rather unexpected, as
OmpW forms an 8-stranded �-barrel, which usually contains a
channel too narrow for solute diffusion. Indeed, its structure
shows that its central channel is truncated, although it may open
up sideways into the interior of the OM (161). If (and how) qua-
ternary ammonium compounds could diffuse through OmpW is
thus an open question; however, we note that AcrAB-TolC is not
needed for full resistance to paraquat (26).

There are a few reports suggesting the possible involvement of
SMR transporters in resistance in clinical isolates of organisms
other than E. coli. The deletion of abeS resulted in significant de-
creases in MICs of chloramphenicol, ciprofloxacin, and erythro-
mycin in A. baumannii (162), and the deletion of a pair of genes,
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kpnEF, in K. pneumoniae makes cells hypersusceptible to a wide
range of antimicrobials (163). An EmrE homolog contributes to
MDR in P. aeruginosa (164). The contribution of SMR transport-
ers to resistance seems to be an important future area of study for
clinical microbiologists.

MATE Transporters

The MATE transporters have now become a part of a new su-
perfamily, the multidrug/oligosaccharidyl-lipid/polysaccharide
(MOP) flippase superfamily (19), because of their connection to
transporters like the LPS flippase RfbX. These transporters are
widespread in bacteria and are also found in higher animals and
plants.

The first of these transporters identified was the Na�/cationic
agent antiporter NorM from Vibrio parahaemolyticus (165), with
12 TMSs. Its homologs pump out cationic dyes, fluoroquinolones,
and aminoglycosides into the periplasmic space. Many of these
transporters use a gradient of Na�, H�, or both as the energy
source. The crystal structure of NorM from Vibrio cholerae indi-
cates an outward-facing conformation with two portals open to
the outer leaflet of the IM (166). The structures of NorM from
Neisseria gonorrhoeae (167) and its distant, proton-driven Pyro-
coccus furiosus homolog (168) bound to several substrates show
a wide, central substrate-binding cavity. With the latter, pro-
tonation of Asp41 bends TMS1 so that the part of the cavity
located in the N-terminal half of the protein becomes col-
lapsed, suggesting that this will produce the extrusion of sub-
strates. Furthermore, cyclic peptides representing prototype
inhibitors were also cocrystallized, and the best inhibitor ap-
pears to bind tightly to the cavity, preventing the bending of
TMS1 (168). Finally, the mechanism of the NorM pump was
examined with MD simulation (169).

Although genes for the MATE pumps have been cloned from
many pathogens, their contribution to resistance in the organisms
of origin has not been studied in most cases. One exception is a
transporter from Enterobacter cloacae, EmmdR, and its gene dis-
ruption contributed to susceptibility to fluoroquinolones and cat-
ionic dyes (170).

SYNERGY WITH THE OUTER MEMBRANE BARRIER

Pathways of Drug Influx across the OM

In Gram-negative bacteria, antimicrobial agents must first tra-
verse the OM barrier in order to exert their action (Fig. 1). The
OM usually functions as a very effective permeability barrier, be-
cause the porin channels are narrow, being only 7 by 11 Å in the E.
coli OmpF porin at its constriction point (171), and the bilayer
domain of the OM is asymmetric, with its outer leaflet composed
only of LPS (172), producing an unusually impermeable bilayer.
Furthermore, because several basic amino acid residues are on one
side and acidic amino acids are on the opposite side at the con-
striction zone of the porin channel, the water molecules inside are
thought to be strongly oriented in one direction, and this presum-
ably hinders the diffusion of lipophilic drugs, as they must disor-
ganize this assembly of water molecules for penetration (173).
Indeed, measurement of influx rates of cephalosporins showed
that lipophilicity strongly hinders diffusion through porin chan-
nels (174). These considerations suggest that only those drugs that
are relatively small, and preferably not too lipophilic, pass through
the porin channels relatively rapidly. This group includes �-lac-

tams, fluoroquinolones, tetracycline, chloramphenicol, cycloser-
ine, and aminoglycosides. Aminoglycosides can be fairly large, but
as polycations they are likely to become “sucked into” the
periplasm by the presence of the interior-negative Donnan poten-
tial (175). Aminoglycosides and �-lactams are also essentially pro-
hibited from diffusion through the bilayer region because of the
presence of multiple cationic groups and a strongly acidic group,
respectively. �-Lactams allow us to measure their OM permeation
process precisely by coupling their influx with their subsequent
hydrolysis by the periplasmic �-lactamase (174), and the impor-
tance of the porin pathway can be ascertained by using porin-
deficient mutants in this assay. For other classes of drugs, quanti-
tative assays of the OM penetration process are difficult. However,
one can artificially increase the permeability of the OM bilayer
region, either by using an agent that disorganizes the LPS leaflet
(polymyxin B nonapeptide) (176) or with mutants with partial
defects in LPS synthesis (177). The MIC values of the agents men-
tioned above showed little change under these conditions, sug-
gesting that they predominantly permeate through the nonbilayer
pathway, i.e., through the porin channels, at least in E. coli.

The preference for the OM permeation pathway, however, is
not absolute. We note in particular that among �-lactams, those
that are more hydrophobic (e.g., oxacillin and cloxacillin) or
larger (such as some third- or fourth-generation cephalosporins)
tend to be hindered in their penetration through porin channels,
and for them, permeation through the bilayer region, although
slow, may become significant (176, 177).

It should be mentioned here that the situation is very different
for organisms such as P. aeruginosa or Acinetobacter species, which
do not produce classical E. coli-type trimeric porins that provide a
fast influx of small drugs. The major nonspecific porin in these
organisms is a homolog of E. coli OmpA, and its major function is
structural, that is, to connect the OM to the underlying pepti-
doglycan (178). The porin function is produced by the alternative
folding of only a small fraction of the protein (perhaps �2% of the
population) to produce �16 transmembrane �-strands, and we
proposed to call this class of porins “slow porins,” in order to
distinguish them from the classical trimeric porins, in which every
molecule produces an open channel (179, 180). Because the num-
ber of open channels is small, OM permeability is very low, and
�-lactams cross the OM of P. aeruginosa at a rate �100 times
lower than that for the E. coli OM (181, 182). Because of this slow
permeation through slow porins, the endogenous RND system
MexAB-OprM can compete well with the influx of hydrophilic
�-lactams as well as other antibiotics (Fig. 1). Thus, the deletion of
a component of this pump complex decreases the MICs of many
antibiotics drastically (Table 2). The situation is similar for A.
baumannii (183). Hence, with these organisms, even efflux at
moderate rates is expected to produce significant increases in
�-lactam MICs, and indeed, the genetic deletion of major efflux
pumps decreases �-lactam MICs substantially (Table 2) (13, 184).
If we increase the OM permeability of P. aeruginosa by adding
polymyxin B nonapeptide, we see impressive decreases in anti-
biotic MICs, comparable to those obtained by the genetic deletion
of MexAB-OprM (42).

Because LPS contains about six, usually all saturated, fatty acid
chains in a single molecule, it is expected to produce a strong
permeability barrier when organized into an LPS-only leaflet, as in
the OM (22). Indeed, when the permeability of the OM bilayer to
steroid probes (which are too large and too hydrophobic for pas-
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sage through porin channels) was examined, it was found to be �2
orders of magnitude lower than that of the conventional phospho-
lipid bilayer membranes (185). At the time when this study was
carried out, the existence of multidrug efflux transporters was not
known. More recently, however, such derivatives of steroid hor-
mones were shown to be the substrates of AcrB (186). Thus, the
permeability difference between the OM bilayer and the phospho-
lipid bilayer might not quite reach 100-fold, yet it seems clear that
the OM bilayer is an unusually impermeant barrier. Nevertheless,
for large, lipophilic agents, the bilayer is the only possible pathway
for OM permeation. These agents include macrolides, rifamycins,
novobiocin, and fusidic acid (Table 3). Glycopeptides such as van-
comycin and teicoplanin are large but not lipophilic. Neverthe-
less, because of their size, their only possible path to cross the OM
is through the bilayer. Since these agents have so much difficulty in
crossing the OM, they are usually considered agents effective
against only Gram-positive bacteria. These agents can be active
against Gram-negative bacteria if the LPS leaflet is breached (176,
177) or if the RND pump is inactivated (13, 187).

Drugs Traversing the OM Mainly through Porin Channels

The RND transporters, which play a predominant role in raising
the MIC values of most antibiotics, pump out drugs mostly from
the periplasmic space, as mentioned above (see Biochemistry and
Genetics of Multidrug Efflux Pumps). They cannot create resis-
tance if the drugs flow into the periplasm across the OM rapidly
enough to counteract the rate of efflux. This is especially so be-
cause the RND pumps appear to have a relatively low velocity, for
example, with AcrB having a velocity of �0.3 nmol/s/mg cells (dry
weight) for penicillins (65) (or turnover rates of the order of 100/s
[see reference 63]). (In E. coli, the chromosomally encoded class C
�-lactamase is expressed at a low, constitutive level, and thus,
�-lactam MIC values are essentially determined by the balance
between influx and active efflux.) On the other hand, ampicillin
was measured to cross the OM with a permeability coefficient (P)
of 2.8 � 10	4 cm/s (64) or at a rate of P � A � �c, where A is the
area of cell surface (�128 cm2/mg) and �c is the concentration
difference of the drug across the OM. If the external concentration
of ampicillin is 10 �g/ml (3 � 10	5 M), the influx rate is expected
to be �10 nmol/s/mg, which is much higher than the Vmax of
efflux. Thus, efflux has only a barely visible effect on the MIC of
this drug in E. coli, as has been ascertained by the use of �acrAB
mutants (Table 2) (188). Similarly, for relatively small antibiotics
such as fluoroquinolones and tetracycline, which are expected to
diffuse through the trimeric porin channels rapidly, AcrAB inac-
tivation decreases their MIC values only minimally (Table 2).

Even among the �-lactams, however, more hydrophobic com-
pounds, such as oxacillin or cloxacillin, diffuse through the E. coli

TABLE 2 Effect of efflux pump gene inactivation on antibiotic MICsa

Agent

MIC (�g/ml)

P. aeruginosa PAO1 E. coli K-12

Wild type mexA::tet Wild type �acrAB

Norfloxacin �8 1 0.004 0.004
Ciprofloxacin 2 0.1 0.01 0.0025
Levofloxacin 0.25b 0.015b 0.063c 0.016c

Besifloxacin 1d 0.06d 0.25d 0.015d

Moxifloxacin 0.8e 0.05e

Tetracycline 8–16 0.5f 1.25 0.156
Tigecycline 8g 0.25g 0.5h 0.125h

Chloramphenicol 16 4 6.25 0.78
Novobiocin 128 16 100 1.56
Erythromycin 512i 64i 50 1.56
Azithromycin 100 6.25 8j 0.5j

Benzylpenicillin �1,024 512 16k 8k

Cloxacillin 5,120l 2.56l 256k 2k

Ampicillin 12.5 3.12
Carbenicillin 32 0.25 4k 1k

Azlocillin 4 0.5 16k 4k

Piperacillin 3m 0.4m 4c 0.25c

Cefoperazone 4 0.5 0.03k 0.015k

Ceftriaxone 64 8 0.0015k 0.0015k

Cefepime 2 1 0.0075k 0.0075k

Cefpirome 4 2 0.015k 0.015k

Imipenem 2 1–2 0.12k 0.12k

a The MIC data for P. aeruginosa are from reference 13, and those for E. coli are from
reference 27, unless otherwise indicated.
b Data from reference 411, where a mexAB-oprM mutant was used.
c Data from reference 95.
d Data from reference 1009, where an oprM mutant was used for P. aeruginosa.
e Data from reference 392.
f Because the mutant strain contains the tet marker, the value for an oprM mutant is
used (13).
g Data from reference 393.
h Data from reference 138.
i Data from reference 187.
j X.-Z. Li, unpublished data.
k Data from reference 188.
l Data from reference 390, where a mexAB-oprM mutant was used.
m Data from reference 391, where an oprM mutant was used.

TABLE 3 Molecular sizes and lipophilicities of antimicrobial agents and
their relation with the effect of acrAB deletion on MICs in E. coli K-12a

Agent
Molecular
weight

Lipophilicity
(XlogP3)c

MIC (�g/ml) for
strain

acrAB� �acrAB

Lipophilic and/or large agents
Clotrimazole 345 5.0 �32 16
Cloxacillinb 436 2.4 256 2
Erythromycin 734 2.7 50 1.56
Fusidic acid 517 5.5 400 3.125
Methotrexate 454 	1.8 �640 80
Novobiocin 613 3.3 100 1.56
Puromycin 472 0.0 100 1.56
Rifampin 823 4.0 5 2.5
SDS 288 4.7 �12,800 100

Small and hydrophilic agents
Ampicillin 349 	1.1 12.5 3.12
Cephalothinb 396 	0.4 4 4
Cefoxitinb 427 0.0 4 1
Ceftazidimeb 547 0.4 0.12 0.12
Imipenemb 317 	0.7 0.12 0.12
Nalidixic acid 232 1.4 3.13 1.56
Norfloxacin 319 	1.0 0.004 0.004
Ciprofloxacin 331 	1.1 0.01 0.0025
Chloramphenicol 323 1.1 6.25 0.78
Tetracycline 444 	2.0 1.25 0.156

a The MIC data are mostly from reference 27.
b MIC data are from reference 188.
c The values of logP (the logarithm of the partition coefficient between n-octanol and
water) are from PubChem (http://pubchem.ncbi.nlm.nih.gov/) based on the calculation
by the XlogP3 method.
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porin channels presumably rather slowly. Consequently, active
efflux by AcrB strongly affects the MIC values, and the cloxacillin
MIC decreases 128-fold, from 256 to 2 �g/ml, upon the deletion of
acrB (Tables 2 and 3) (188). Because the acrB deletion hardly
affects the ampicillin MIC, we thought previously that cloxacillin
must be an exceptionally good substrate of AcrB and that ampi-
cillin was a very poor substrate. Nonetheless, quantitative deter-
mination of efflux kinetic parameters (65) showed that these two
drugs have similar affinities for AcrB and that the Vmax is higher
for ampicillin by only �2-fold.

In contrast, in P. aeruginosa, where even small antibiotics must
diffuse across the OM slowly via its slow porin, active efflux be-
comes very effective in increasing MICs, as seen from the fact that
MICs of practically any antibiotic are drastically decreased upon
the deletion of its major RND pump MexAB-OprM (Table 2).
Here the situation with �-lactams becomes somewhat more com-
plex, because with early compounds, hydrolysis by the powerful,
inducible chromosomal �-lactamase plays a significant role. The
relative lack of an effect of pump deletion on the fourth-genera-
tion cephems cefepime and cefpirome (Table 2) may suggest that
they are poor substrates of the pump; it may also reflect the ex-
treme stability of these compounds with the chromosomal class C
enzyme (189). The imipenem MIC is hardly affected by the pump
deletion, but this is because imipenem permeates across the OM
much more rapidly than other compounds, by utilizing a specific
channel, OprD (190). Thus, the efflux pump, even if it were capa-
ble of pumping out imipenem, would be overmatched by the
rapid influx of the substrate (Fig. 1).

Drugs Traversing the OM through the Lipid Bilayer Region

Large molecules that cannot diffuse through the porin channels
must penetrate the OM by slowly diffusing through the asymmet-
ric bilayer domains, which have similarly low permeability in E.
coli and P. aeruginosa (185, 191). Because of their slow influx,
active efflux can become extremely effective, particularly when
these molecules are preferred substrates for the efflux pumps, as
can be seen in the huge decreases of MICs upon genetic inactiva-
tion of the main RND pumps (novobiocin and erythromycin)
(Tables 2 and 3).

To recapitulate, the multidrug pumps work in synergy with the
OM barrier. The pumps can make Gram-negative bacteria resis-
tant only when the influx of the drug across the OM is relatively
slow, and thus, efflux should always be considered in relation to
the OM penetration process (Fig. 1). This also underscores the
problems presented by organisms that produce slow porins, such
as P. aeruginosa and Acinetobacter, because the efflux processes
there become extremely efficient in increasing the resistance level.

GAMMAPROTEOBACTERIA: ENTEROBACTERIACEAE

Drug efflux pumps are widely distributed in bacterial species. The
contribution of representative pumps to resistance and their syn-
ergistic interplay with other resistance mechanisms in clinical
settings are further described below. The members of the Entero-
bacteriaceae family discussed in this section all produce high-per-
meability trimeric porins in their OM, although there are likely
differences in the sizes of the channels.

E. coli

E. coli is a commensal resident of human and animal intestinal
tracts but also includes various intestinal pathogenic types (en-

terotoxigenic, enterohemorrhagic, enteroinvasive, enteropatho-
genic, enteroaggregative, and diffusely adherent E. coli) as well as
extraintestinal pathogenic E. coli (192). The major, constitutively
expressed RND-type multidrug transporter is AcrB, although E.
coli possesses a number of drug pumps of various families (Table
1) (15, 16). AcrB is described above as the prototype example for
the structural and biochemical elucidation of RND pump trans-
port mechanisms. The effect of acrAB genetic deletion on antimi-
crobial susceptibility is shown in Tables 1 to 3. Lipophilic (or
large) compounds (e.g., erythromycin, novobiocin, fusidic acid,
and cloxacillin) cannot diffuse easily through porins, and conse-
quently, AcrB-catalyzed efflux becomes very effective in raising
their MIC values to a range outside clinical utility (Table 3). Thus,
efflux is responsible, in synergy with the OM barrier, for making E.
coli intrinsically resistant to such compounds. In contrast, com-
pounds that are smaller and usually hydrophilic (with the excep-
tion of nalidixic acid and chloramphenicol) (such as ampicillin,
cephalothin, imipenem, and fluoroquinolones) can penetrate the
OM barrier rapidly through porin channels. Therefore, in wild-
type cells, AcrB cannot raise MIC values to a significant extent,
although many of these drugs are likely to be good substrates of
AcrB (for the case of ampicillin, see reference 65).

These small agents are of course useful in the treatment of E. coli
infections. Regarding treatment options, a major advance in the
1960s was the introduction of semisynthetic penicillins and ceph-
alosporins active against Gram-negative bacteria, such as ampicil-
lin and amoxicillin, and the first-generation cephalosporins (e.g.,
cephalothin). Their efficacy decreased drastically with the spread
of plasmids coding for class A �-lactamases (usually of the TEM or
SHV type), which could hydrolyze these drugs rapidly. To counter
this problem, in the 1980s, extended-spectrum cephems (third-
generation cephalosporins) were introduced. They could with-
stand the assault of class A �-lactamases but were hydrolyzed at
sufficient rates by overproduced, chromosomal, class C AmpC
�-lactamases in Enterobacter and Proteus, etc. (but not in E. coli).
In E. coli, these extended-spectrum cephems eventually became
less useful because of the spread of plasmids producing TEM or
SHV derivatives as extended-spectrum �-lactamases (ESBLs) that
acquired a broadened substrate specificity. More recently, how-
ever, plasmids encoding class A CTX-M-type enzymes, which ap-
parently originated from a chromosomal gene in an obscure genus
called Kluyvera, have become so prevalent as to replace the older
ESBLs (193). One common type, CTX-M-15, hydrolyzes a third-
generation agent, cefotaxime, much faster than it does a first-
generation compound, cephalothin. Other agents also entered the
market around the time of the introduction of the extended-spec-
trum cephems or somewhat later. These agents include fluoro-
quinolones, semisynthetic aminoglycosides, and carbapenems.

It should be noted that there has been a steady increase in the
resistance of E. coli isolates to the agents mentioned above. In a
survey covering 30 years of isolates in Sweden (194), the preva-
lence of isolates showing “non-wild-type” MICs of ciprofloxacin
increased from 0% to 40% in 2009. Drugs that have become es-
sentially useless in recent years include ampicillin (70% showing
non-wild-type MIC values), tetracyclines, and trimethoprim (up
to 60%). It is even more alarming that these statistics are from
Sweden, a country with one of the lowest frequencies of drug-
resistant bacteria. The prevalence of E. coli isolates resistant to
extended-spectrum cephalosporins was 4.4% in Sweden in 2012
but was much higher in some other European countries, e.g., 31%
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in Slovenia (195). Efflux mechanisms likely contribute to such a
rapid emergence of resistance in the presence of antimicrobial
selection pressure, as discussed below.

Fluoroquinolones. Because fluoroquinolones are not hydro-
lyzed in bacteria, resistance to these agents involves the OM per-
meation barrier, active efflux, and mutational alterations to their
targets, DNA topoisomerases. The target mutations are well
known and are indeed present in practically all resistant strains of
clinical origin. However, the first two factors also make frequent
contributions, especially in strains exhibiting very high MIC val-
ues. Already in 1996, a pioneering study by Everett et al. (196)
showed that among 36 E. coli strains with ciprofloxacin MICs of
�2 �g/ml, 22 accumulated smaller amounts of ciprofloxacin than
the wild-type strains in an energy-dependent manner, suggesting
active efflux. That study also found alterations in porin expres-
sion, although their identities were not conclusively established.
The involvement of efflux was also determined by the finding that
fluoroquinolone-resistant isolates tended to be resistant to sol-
vents (197). Since both fluoroquinolones and solvents are sub-
strates of AcrB, this suggests strongly the involvement of this
pump, an idea that was later confirmed by the discovery that these
isolates had mutations in the marR repressor gene, which resulted
in the overproduction of the MarA activator of acrAB transcrip-
tion (198). The strong overexpression of MarA was also found in
most levofloxacin-resistant clinical strains from Japan (199), and
the overexpression of AcrA/AcrB was correlated with high levels of
norfloxacin resistance among clinical isolates from the United
States (200). Since MarA represses the expression of the larger
channel porin OmpF (201), the downregulation of OmpF in some
strains might have been caused in this manner. Among isolates
resistant to amoxicillin, co-trimoxazole, and quaternary ammo-
nium disinfectants, TolC overproduction was common, and this
appeared to be caused by MarA or SoxS overproduction (202).
High-level fluoroquinolone-resistant strains from China con-
tained mutations in the acrR gene (203). In any case, numerous
studies have now confirmed the important role of AcrAB overpro-
duction in high-level fluoroquinolone resistance (188, 200, 204).
Although the levels of porins were not examined frequently, a
study showed that 10 out of 11 highly fluoroquinolone-resistant
isolates had a strongly decreased expression level of OmpF (205).
Additionally, a plasmid-encoded fluoroquinolone-specific MFS
pump, QepA, was reported in 2007 (206).

�-Lactams. Most cephalosporins and penicillins are substrates
of AcrB. With sophisticated methodologies using intact cells, the
kinetic constants for efflux have been determined for about a
dozen �-lactams (63–65). Older compounds (e.g., ampicillin,
cephalothin, and cephaloridine) were effective against E. coli
partly because they were relatively small and hydrophilic and thus
penetrated rapidly through the OmpF and OmpC porins (174,
207, 208). As described above (see Synergy with the Outer Mem-
brane Barrier), active efflux cannot increase the MICs of these
rapidly penetrating compounds, and indeed, the deletion of acrAB
has no or very minor effects on their MICs (188). However, if
porin permeability is decreased, efflux would produce a more vis-
ible effect. In a study reported in 1981, selection with carbenicillin
easily enriched for mutants lacking the wider-channel OmpF and
producing only the more restrictive OmpC porin (209). Since
carbenicillin is not easily hydrolyzed by the chromosomal AmpC
�-lactamase (210), from the vantage point of 2014, we can con-
clude that the mutant lacking OmpF became resistant to carben-

icillin because the balance between influx and active efflux was
perturbed. (The reader should be reminded here that even a very
slowly penetrating drug would reach a half-equilibrium concen-
tration in the periplasm within 1 min [21]. Thus, counteracting
mechanisms such as efflux or enzymatic hydrolysis are absolutely
necessary to raise the �-lactam MIC beyond the range needed for
inhibiting their targets.) Indeed, one study (209) showed that the
mutant became much more resistant to good substrates of AcrB,
such as benzylpenicillin (65) or cephaloram, but not to poor sub-
strates of AcrB, such as cefazolin and cephaloridine (63). A similar
in vitro selection of porin-deficient strains was achieved by using
cefoxitin (211), which is also only slowly hydrolyzed by the chro-
mosomal �-lactamase. Laboratory selection using ceftazidime or
ceftibuten, starting from an E. coli strain containing a TEM-1-
producing plasmid, also resulted in the loss of OmpF or OmpF
and OmpC (212). A clinical example involving the loss of a porin
during therapy with a first-generation cephalosporin is described
below in the section on Salmonella spp.

The loss or downregulation of porins thus seems an important
mechanism for increased resistance to �-lactams in E. coli (as with
Enterobacter and Klebsiella, described below), but unfortunately,
this has not been examined in most studies of clinical isolates of
this species. One would predict (see also above) that such a mech-
anism may be even more important with the extended-spectrum
cephems because they tend to be larger and tend to penetrate more
slowly through wild-type porins (208). In rare studies where the
porin pattern was examined, its alteration was found. In 1991,
seven out of the eight amoxicillin-clavulanate-resistant strains ex-
amined were found to produce reduced levels of or no OmpF
protein (213). In the era dominated by extended-spectrum ceph-
ems, a study of clonally related cefoxitin- and ceftazidime-resis-
tant strains from a Spanish hospital in 2000 showed that all strains
were deficient in OmpF and produced AmpC �-lactamase at a
high level (214). In a 2003 study of E. coli strains resistant to ex-
tended-spectrum cephems, most strains not producing ESBLs had
altered patterns usually involving the apparent loss of OmpF
(215). The absence of OmpF was also seen in a ceftazidime-resis-
tant strain (216). In these porin-deficient strains, efflux is likely to
contribute to the increased MIC values, although an even stronger
contribution would probably come from enzymatic hydrolysis.

More recently, the widespread use of carbapenems appears to
have selected porin-deficient mutants in E. coli (217, 218), as is
also seen in other species of Enterobacteriaceae (see below). This
could be because the widely disseminated enzymes cannot yet hy-
drolyze carbapenems very efficiently. The prevalence of porin-
deficient strains is also consistent with the fact that imipenem, a
frequently used agent, is most probably a poor substrate of AcrB;
thus, porin loss, but not pump overproduction, raises the MIC
values. However, other carbapenems, containing larger and often
hydrophobic side chains, behave as the substrates of RND pumps
(see reference 219, for example).

A priori, a strong overproduction of AcrAB-TolC should be
able to increase the MIC values of �-lactams that are the substrates
of this pump. However, AcrB is already constitutively expressed,
and mutations in the global regulatory systems Mar, Sox, and Rob
(see Regulation of Multidrug Efflux Pumps, below) can increase
its expression only severalfold and may not produce a strong effect
on the MIC, especially when enzymatic hydrolysis also plays a role
in resistance. Perhaps this might be why pump overproducers
were often not noted among clinical resistant isolates.
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Other drugs. Given its extremely wide specificity, the AcrAB-
TolC system obviously makes a major contribution to the in-
creased resistance to other drugs (Tables 1 to 3). Even for rifamy-
cins, which are large lipophilic molecules and expected to cross the
OM via its lipid bilayer, the acrAB status has shown a modest
impact on rifampin susceptibility. A relatively low level (20 �g/
ml) of PA�N, an EPI of the AcrB pump, also decreased the MIC
(�128-fold) of rifaximin, a rifamycin derivative, for resistant
strains with no target mutations (21, 220), suggesting that efflux
can contribute to rifamycin resistance under certain conditions
(e.g., strain or species specific) (see also the section on Neisseria for
rifampin as an MtrCDE pump substrate, below). However, as ex-
pected, the susceptibility of E. coli to rifampin has also been known
to be impacted by the OM status (177).

Salmonella spp.

A clinical Salmonella enterica serovar Typhimurium isolate that
lost OmpC and became resistant to the earlier-generation ceph-
ems was reported in 1987 (221). A patient who received a kidney
transplant developed septicemia involving this organism, which
developed cephalexin resistance only 3 days after this drug was
added to the regimen. The pretherapy strain produced OmpF and
OmpC in the laboratory, but the posttherapy isolate produced
only OmpF. Presumably, the synthesis of the OmpF porin was
strongly repressed by the relatively high salt content within the
human body and was thus irrelevant during therapy, and hence,
the posttherapy strain allowed only a minimal influx of drugs,
which made it more resistant to cephalexin, which was hydrolyzed
readily by the plasmid-encoded TEM �-lactamase in both isolates.

In Salmonella, OmpF and OmpC are the major porins, and
AcrB is also the major, constitutive multidrug pump, although
there are a total of 5 chromosomally encoded RND systems
identified (i.e., AcrAB-TolC, AcrA-AcrD-TolC, AcrEF-TolC,
MdtABC-TolC, and MsdABC or MsdAB-TolC) (58, 222–224).
Importantly, RamA, a positive regulator of the acrAB transcrip-
tion that does not exist in E. coli, seems to play a major role in
AcrAB overproduction (see Regulation of Multidrug Efflux
Pumps, below). Thus, for fluoroquinolones, we would expect sit-
uations similar to those that have been found for E. coli. In 1993,
Piddock and associates found that posttherapy, ciprofloxacin-re-
sistant isolates accumulated much less drug inside the cells (225),
a phenomenon that is now interpreted to be a result of AcrB-
driven efflux. Although mutations in target DNA topoisomerases
are important, very high-level resistance to fluoroquinolones
seems to require the additional contribution of increased efflux
(188, 226), and this was the case in the DT204 clone (227). Among
nontyphoid Salmonella isolates from Spain, �40% were nalidixic
acid resistant, although their ciprofloxacin MICs were below the
clinical resistance breakpoint; in all of these strains, MICs of nali-
dixic acid (and ciprofloxacin) decreased strongly in the presence
of the AcrB inhibitor PA�N at 20 �g/ml (228) (see Efflux Pump
Inhibitors, below). In laboratory-selected ciprofloxacin-resistant
S. enterica serovar Enteritidis mutants, AcrB overproduction was
present, and in one mutant, a deficiency of the OmpF porin was
also present (229). About 5% of S. enterica serovar Typhi strains
isolated in South Africa were nalidixic acid resistant, and their
nalidixic acid and ciprofloxacin MICs decreased strongly in the
presence of PA�N, although this inhibitor was used at a high con-
centration of 40 �g/ml (230). With �-lactams, one might also
expect a situation similar to that found in E. coli, i.e., decreased

porin expression and efflux contributing to resistance together
with hydrolysis by �-lactamases encoded by R plasmids. In fact, in
a plasmid-free strain, the contribution of efflux is more pro-
nounced because of the total absence of enzymatic hydrolysis,
caused by the absence of the chromosomal ampC gene in this
species (231). Thus, in S. enterica serovar Typhimurium, inactiva-
tion of acrAB decreases MIC values of penicillins and cephalospo-
rins quite strongly (58).

Efflux is a significant factor for most �-lactams, with the excep-
tion of cefazolin, which is too hydrophilic to be a substrate for
AcrB (58, 63). These data agree with the actual measurements of
AcrB-catalyzed efflux of �-lactams (63–65). However, changes in
porins and efflux have been rarely reported for �-lactam-resistant
Salmonella isolates. These results may be related to the ecology of
these organisms. Salmonella, as a pathogen of farm animals, tends
to exist in a strongly clonal manner (232). Therefore, once a clone
acquires a resistance plasmid, it will remain and can become the
major mechanism of resistance. During the recent period in which
extended-spectrum cephems were among the most important
agents for therapy, strains containing plasmid-encoded AmpC
�-lactamases (e.g., CMY enzymes) and ESBL �-lactamase (e.g.,
CTX-M) were prevalent among resistant strains (233). They have
an advantage over porin-depressed or efflux-enhanced strains,
which may have to pay heavily for these unfavorable metabolic
changes. In addition, with E. coli (bloodstream) infections, resis-
tant mutants can be selected during the course of therapy, thus
favoring porin or efflux mutants. Infections with nontyphoid Sal-
monella may be caused frequently by strains already containing R
plasmids (232, 234). In this regard, there are increasing numbers
of reports of multidrug-resistant or extensively drug-resistant iso-
lates of Salmonella that carry the plasmid-encoded OqxAB RND
pump with other resistance determinants such as aac(6=)-Ib-cr
and/or CTX-M genes (228, 235, 236).

Regarding porin mutants, there are a few reports implicating
porin downregulation in �-lactam resistance. Armand-Lefèvre et
al. (237) showed that OmpF was completely deficient in an imi-
penem-resistant, CMY-4 �-lactamase-producing isolate of S. en-
terica serovar Wien and that the resistance can be reproduced in
an OmpF-deleted E. coli strain. Su et al. (234) reported that treat-
ment of a patient infected by S. enterica serovar Typhimurium
with ertapenem led to the development of carbapenem resistance
concomitant with the mutational inactivation of OmpC, which
was the only strongly expressed porin in the parent strain; this
confirms the above-mentioned prediction that porin loss would
be one mechanism of resistance development during the course of
therapy. In a report with results more difficult to interpret, the
downregulation of OmpD was correlated with an increased MIC
of ceftriaxone (238). Unfortunately, nothing is known about the
permeability of the channels of OmpD, although its E. coli ho-
molog, NmpC, showed less single-channel conductance in NaCl
than with OmpF and OmpC (239).

Citrobacter spp.

The genus Citrobacter is closely related to Salmonella, and one
would expect rather similar situations. Thus, some fluoroquin-
olone-resistant isolates of Citrobacter freundii were found to accu-
mulate less drug (240). In vitro selection of fluoroquinolone-re-
sistant mutants showed the importance of increased efflux in
practically all cases (241). Intrinsic resistance to linezolid is medi-
ated by AcrB in this species as well as others (242). A C. freundii
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isolate containing the plasmid-encoded RND pump was reported
recently (243) (see Drug Efflux Genes on Plasmids, below).

Enterobacter aerogenes and Enterobacter cloacae

In contrast to E. coli, the chromosomally encoded ampC �-lacta-
mase in Enterobacter aerogenes and Enterobacter cloacae is strongly
inducible, and thus, penicillins and the first-generation cephalo-
sporins were ineffective for them. The third-generation cephalo-
sporins were initially thought to be resistant to AmpC-catalyzed
hydrolysis. However, strongly overproduced AmpC turned out to
have a low Vmax but a very high affinity for these drugs (244) and
to be capable of producing significant resistance. The fourth-gen-
eration cephems and carbapenems are quite effective against non-
plasmid-containing strains. Enterobacter spp. produce the consti-
tutive AcrB pump as in E. coli. (Another RND pump gene, eefB,
was cloned from E. aerogenes, but its inactivation had no effect on
the MICs of antibiotics [245].) They also possess the E. coli-like
porins OmpF and OmpC, and hence, one would expect situations
in these organisms similar to those seen in E. coli regarding their
mechanisms of resistance to �-lactams and fluoroquinolones.

When a large number of �-lactam-resistant strains of Entero-
bacteriaceae from French hospitals was examined for the produc-
tion of porins by Pagès and associates in 1996 (246), 6% of resis-
tant strains of E. cloacae and 44% of resistant strains of E. aerogenes
lacked detectable porins. The very high fraction of porin defi-
ciency in E. aerogenes is striking. As these bacteria are commensal
organisms, they presumably had less chance to acquire R plasmids
than did obligatory pathogens like Salmonella, at least up to 1996
(although the plasmids producing ESBLs have become increas-
ingly common in recent years). Furthermore, the resistant strains
were probably selected mostly during therapy, favoring muta-
tional mechanisms. Still, the difference in the frequency of porin-
deficient strains between E. aerogenes (20 out of 44 resistant
strains) and E. cloacae (1 out of 17 resistant isolates) begs for an
explanation. The porins of at least one strain of E. cloacae had a
five-times-lower permeability than did those of E. coli (244), so
perhaps, in this organism, the influx of drugs across the OM is
already limited, even without any mutation. Cephaloridine per-
meation of E. cloacae was found to be 25-fold lower than that of E.
coli by another laboratory (247). (The OM permeability of E. clo-
acae to �-lactams, measured by a novel method [248], was re-
ported to be 20 to 1,000 times lower than that of E. coli. However,
the E. coli values were not obtained in the same way, and it is
uncertain if a quantitative comparison is warranted.) In contrast,
E. aerogenes was found to have a permeability very similar to that
of E. coli (249), and thus, the creation of significant levels of resis-
tance may need the downregulation of porins in addition to drug
hydrolysis and/or efflux. (OmpF and OmpC from E. aerogenes
were studied in detail, and the repression of OmpF biosynthesis by
high osmotic pressure resulted in MIC increases of 8- to 16-fold
[250] for slowly penetrating compounds such as cefotaxime, cef-
tazidime, and ceftriaxone [208].) An imipenem-resistant isolate
of E. cloacae was deficient in both OmpF and OmpC (247). A
carbapenem-resistant mutant of E. cloacae, selected during imi-
penem therapy, lacked both OmpF and OmpD porins (251); fur-
thermore, ertapenem and meropenem MIC values were decreased
strongly in the presence of 40 �g/ml PA�N, although overexpres-
sion of AcrB was not evident. (Imipenem does not appear to be a
substrate of the P. aeruginosa MexAB-OprM system [13], but
meropenem, a derivative with a lipophilic side chain, is a substrate

[252]. Ertapenem, another carbapenem with a lipophilic side
chain, is also expected to be a substrate for MexAB-OprM and
homologous AcrAB.) In vitro selection for E. cloacae mutants with
increased MICs of ceftazidime, cefepime, or cefpirome often re-
sulted in strains defective in OmpF (253, 254). A study of ertap-
enem-resistant isolates from Taiwan (255) found that 43% were
altered in the expression of porins (and 96% expressed a multi-
drug pump). In another study of carbapenem-resistant isolates
(256), both OmpF and OmpC porins were totally lacking in two E.
aerogenes isolates, whereas variable decreases in porin levels were
found in E. cloacae isolates. Similarly, an imipenem-resistant E.
aerogenes isolate lacked both OmpF and OmpC (257). A more
recent study demonstrated that porin expression often becomes
altered when E. aerogenes infection is treated with imipenem
(258).

The Pagès group continued their work on E. aerogenes clinical
isolates, which resulted in several studies. In one cephalosporin-
resistant isolate, there was a missense mutation leading to an al-
tered porin with decreased permeability (259). They also identi-
fied an increased efflux of fluoroquinolones and chloramphenicol
in some multidrug-resistant strains (260), which is likely to be due
to AcrB (261). Finally, frequencies of chloramphenicol-resistant
isolates susceptible to the AcrB inhibitor PA�N appeared to have
increased between 1995 and 2003, suggesting a larger role for the
broad-specificity efflux mechanism in recent years (262).

As would be expected from results with E. coli and Salmonella, a
large fraction of fluoroquinolone-resistant isolates of E. cloacae
appeared to overproduce a multidrug pump, presumably AcrB
(263). Deletion of acrA predictably decreased the MICs of oxacil-
lin, erythromycin, clindamycin, linezolid, ciprofloxacin, chloram-
phenicol, tetracycline, and tigecycline (264). All multidrug-resis-
tant E. aerogenes strains tested (also resistant to �-lactams) were
found to overproduce AcrAB (265), but the effect of an EPI on
�-lactam MICs was not examined. Among the large, lipophilic
agents that have little activity against these species, macrolides are
AcrAB substrates, but a ketolide, telithromycin, appeared to also
be pumped out by an additional pump that is susceptible to PA�N
inhibition (266). Enterobacter spp. develop resistance to tigecy-
cline through AcrAB overproduction (during ciprofloxacin treat-
ment in one study [267]), and this was caused by the overproduc-
tion of the RamA regulator (268), although one study concluded
that the overexpression of RamA, an not necessarily that of AcrAB,
correlated with the resistance, suggesting the involvement of other
efflux pumps (269).

Klebsiella pneumoniae

Klebsiella pneumoniae produces the E. coli-like trimeric porins
OmpK36 (an OmpC homolog) (270) and OmpK35 (an OmpF
homolog) (271). Their permeability has not been measured in a
way that could be compared with that of E. coli porins. However,
our recent measurement of ampicillin and benzylpenicillin per-
meation in strain ATCC 11296 showed that the OM of this species
is vastly more permeable to benzylpenicillin than E. coli OmpF, yet
the permeability to ampicillin is actually similar (S. Kojima, E.
Sugawara, and H. Nikaido, unpublished data), an observation that
explains why porin deficiency is needed for resistance in K. pneu-
moniae. It also produces the ubiquitous AcrAB-TolC pump,
whose deletion predictably produces hypersusceptibility to eryth-
romycin, chloramphenicol, nalidixic acid, fluoroquinolones, ce-
foxitin, and cefotaxime and surprisingly produces hypersuscepti-
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bility to gentamicin (272). Thus, some aspects of the resistance
mechanisms are expected to be similar to what was found for the
species discussed above. Indeed, the loss of porins was reported
frequently to be the contributing mechanism of resistance, begin-
ning with a 1985 report by Gutmann and associates (273) that
one-step selection with nalidixic acid, trimethoprim, or chloram-
phenicol yielded mutants showing cross-resistance to all three
agents and with detectable changes in OM protein patterns. Later,
the selection of a porin-deficient mutant in a patient treated with
cefoxitin was reported by the same group (274). During the 1990s,
in vitro selection of porin mutants by cefoperazone-sulbactam
(275) or cefoxitin (276) was confirmed, and clinical porin-defi-
cient isolates resistant to cefoxitin and extended-spectrum ceph-
ems (277, 278) were reported. Porin loss is often caused by the
insertion of an insertion sequence (IS) element (279). In the pres-
ent century, reports on porin loss are so numerous that it is im-
possible to give an exhaustive list of the literature; we give only a
few representative examples (280, 281). We note, however, that
clinical isolates resistant to carbapenems often lack porins (257,
282, 283). The deletion of OmpC alone has little effect on antibi-
otic MICs, but the loss of OmpF has a large effect, as predicted
(284). When OmpC or OmpF was expressed from plasmids in a
strain expressing an ESBL but lacking both porins, MIC values for
most agents decreased significantly, but the extent of the decrease
was greater with the expression of OmpF (OmpK35) (271). The
difference was larger with more bulky agents: for cefpirome (515
Da), the MIC of 512 �g/ml in the porin-deficient strain was re-
duced to 4 �g/ml by the expression of OmpC, whereas OmpF
expression reduced it to 0.5 �g/ml. The MIC of a large agent,
ceftazidime (547 Da), which was �512 �g/ml in the porin-defi-
cient parent strain, was reduced only to 256 �g/ml by the expres-
sion of OmpC, whereas OmpF expression decreased it to 2 �g/ml.
On the other hand, for a smaller agent, meropenem (383 Da), the
expression of either porin decreased the MIC of 4 �g/ml in the
parent strain to the same value, 0.03 �g/ml. These results suggest
that OmpF produces a more permissive, possibly larger, diffusion
channel than does OmpC. (This concept may also explain why
there have been some confusing data on the role of OmpF versus
OmpC for carbapenem susceptibility [see reference 285].) A sim-
ilar explanation was invoked to explain the higher level of resis-
tance to a more bulky ceftazidime than a smaller cefotaxime in a
strain lacking only OmpF (286); this seems to be a valid hypothesis
since the strain produced an ESBL enzyme that hydrolyzed cefo-
taxime much better, on the basis of Vmax/Km values.

In recent years, K. pneumoniae has become a major nosocomial
pathogen causing outbreaks of multidrug-resistant clones. Such
clones typically express ESBLs (more recently of the CTX-M type)
and/or AmpC-type enzymes. These enzymes obviously make pre-
dominant contributions to general �-lactam resistance, thus mak-
ing carbapenems some of the few remaining effective drugs. Re-
cently, however, porin deficiency combined with enzymes with
marginal carbapenemase activity has attracted attention. One of
the often encountered types combines a frameshift null mutation
of OmpF with a mutational change in OmpC, which inserts a few
residues into loop 3 that create the narrow constriction of the
channel (for example, see references 283, 285, 287, and 288). The
role of porin deficiency is often underestimated. For example,
Zhang et al. (285) conclude that porin alterations play only a mi-
nor role because the removal of the KPC-2 plasmid reduces the
carbapenem MICs drastically. Still, unlike the presence of �-lac-

tamase, the porin deficiency by itself cannot raise the carbapenem
MICs substantially. (The proper experiment should have been the
addition of the same plasmid to the wild-type and porin-deficient
strains.) Considering that active efflux contributes to resistance to
agents other than imipenem in organisms with a low-permeability
OM, such as P. aeruginosa (252), efflux is likely to also make a
contribution in porin-deficient K. pneumoniae, but this remains a
topic for future study. Finally, LamB appeared to allow some per-
meation of carbapenems in a strain deficient in both OmpF and
OmpC (289).

The genome of K. pneumoniae shows the presence of a large
number of drug efflux pumps similar to those observed in E. coli
(290). The overexpression of efflux pumps, most probably that of
AcrAB, is important in resistance to certain agents, such as chlor-
amphenicol and tetracycline but especially fluoroquinolones (see
references 291 and 292). In an isolate lacking porins and showing
high-level fluoroquinolone resistance, an efflux pump was appar-
ently expressed strongly, as judged from the low level of norfloxa-
cin accumulation in the absence of energy poison (293). In an
important study of ESBL-producing strains from outbreaks of
nosocomial infections (294), ciprofloxacin resistance (caused in
part by AcrB overproduction) was strongly correlated with cefoxi-
tin resistance, suggesting that for �-lactam resistance, not only the
�-lactamases and porin depletion but also efflux may make a sig-
nificant contribution. Similarly, ESBL-producing strains often
lack porins and show a stronger efflux of fluoroquinolones (295).
The significance of efflux in �-lactam resistance was pursued later
by the Pagès group (296), who examined cefoxitin-resistant but
ceftazidime-susceptible clinical isolates. Although �-lactam resis-
tance is most frequently caused by the plasmid-encoded ESBLs,
the ceftazidime susceptibility of these strains did not fit with this
idea. Indeed, all the strains examined were devoid of plasmid-
encoded �-lactamases and produced only the chromosomal class
A enzyme. However, in the presence of PA�N (50 �g/ml [unfor-
tunately an excessive concentration]), the MICs of cefoxitin (and
cloxacillin), erythromycin, chloramphenicol, nalidixic acid, and
ofloxacin decreased strongly, implicating active efflux as a major
factor in resistance. There was little decrease in the ceftazidime
MIC; as we mention above, ceftazidime is too hydrophilic to be a
good substrate of AcrB. Similarly, studies by Källman et al. (297,
298) are important because they show that AcrAB-mediated efflux
contributes to cefuroxime resistance in both K. pneumoniae and E.
coli, together with the porin deficiency and �-lactamase-catalyzed
hydrolysis. Additionally, in vitro selection with cefoxitin and fluo-
roquinolones, starting from the drug-susceptible revertants of the
clinical strains described above, resulted in AcrB overproduction
caused mainly by mutations in ramR and in one case in soxR (299).
A recent study linked ramR mutation-driven overexpression of
AcrAB to tigecycline resistance in KPC-producing strains (300),
although one study suggested that RamA-AcrB overexpression
occurred only in about one-half of the tigecycline-resistant iso-
lates (301).

Finally, efflux pumps other than AcrB also contribute to resis-
tance. In addition to MDR mediated by the chromosomally en-
coded OqxAB pump (302–304), overexpression of the newly
identified RND-type KpgABC pump was involved in tigecycline
nonsusceptibility due to an IS element insertion in the promoter
region of kpgABC (305). The KexD RND pump expressed by clon-
ing provides MDR with the requirement of AcrA accessory and
KocC OM proteins (306). KpnEF, an SMR pump, contributes to
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MDR and may be important in the infection process, because its
expression is regulated by the Cpx regulatory system, which also
affects capsule production (163). Inactivation of the MFS-type
KpnGH pump results in 4- to 10-fold MIC reductions of the third-
and fourth-generation cephalosporins, spectinomycin, strepto-
mycin, and tetracycline (307).

Proteus, Providencia, and Morganella spp.

In an extensive study in 1987 (308), it was shown that two major
OM proteins (presumably porins) are produced in Proteus mira-
bilis, Proteus vulgaris, Morganella morganii, Providencia rettgeri,
and Providencia alcalifaciens and that the major porin in every case
had channel properties similar to those of E. coli OmpF. Further-
more, in vitro selection with cefoxitin led to the isolation of mu-
tants deficient in the major porin in each species. Since the chro-
mosomal AmpC �-lactamases of these species can hydrolyze
cefoxitin only extremely slowly and cefoxitin passes through the
porin channel only slowly, this selection is similar to what has
been achieved with carbenicillin and E. coli K-12, resulting in the
loss of the porin with a larger channel. Interestingly, in 4 out of 5
strains, the MIC of tetracycline also increased upon selection with
cefoxitin, suggesting that strains derepressed for a multidrug
pump, presumably AcrB, were also selected. In a fluoroquin-
olone-resistant M. morganii isolate selected in the laboratory,
there was a downregulation of what appeared to be OmpF and
increased norfloxacin uptake in the presence of CCCP, indicating
active efflux (309).

The substrate range of AcrB from P. mirabilis includes, as ex-
pected, a number of antibiotics, dyes, and detergents (310, 311). A
similar range was found in a tigecycline-resistant clinical isolate of
M. morganii overexpressing AcrAB, whose inactivation has led to
hypersusceptibility to multiple agents, including a 130-fold reduc-
tion of the tigecycline MIC value (312). In a 1992 study (313), a
cefoxitin-resistant laboratory isolate of P. vulgaris not only lacked
OmpF but also accumulated smaller amounts of most fluoro-
quinolones; although multidrug pumps were not known at that
time, it seems clear that resistance was the result of synergy be-
tween the decreased OM permeability and AcrB-catalyzed efflux.
This study found that porin loss did not diminish the intracellular
accumulation of two agents, sparfloxacin and tosufloxacin. Since
it is difficult to imagine that these compounds cross the OM by a
unique, unconventional route, this result, if confirmed, may indi-
cate that the major pump discriminates between these substrates.
Isolates of P. rettgeri from larvae of the oil fly have shown a corre-
lation between natural resistance to a variety of antimicrobials and
organic solvent tolerance, a phenomenon indicating strong efflux
involvement (314).

Serratia marcescens

Porins of Serratia marcescens are similar to OmpF/OmpC of E. coli
in terms of cephalosporin permeation (315). S. marcescens isolates
selected in increasingly higher concentrations of cephalosporins,
often those compounds that are not easily hydrolyzed by the en-
dogenous �-lactamase, were found to lack one or more porins
(316, 317). Similar porin-deficient S. marcescens isolates were also
selected by using chloramphenicol, nalidixic acid, or trim-
ethoprim and showed cross-resistance to �-lactams (273); from
the vantage point of today, it seems quite likely that at least some
mutants were overexpressing efflux pumps. Selection with moxa-
lactam yielded a mutant strain lacking a “42-kDa” porin, or

OmpF, and its OM showed a permeability to cephaloridine �100-
fold lower than that of the parent strain, in spite of the presence of
the “40-kDa” or OmpC porin (318). In contrast, OmpC deletion
had little influence on antibiotic susceptibility. Salicylate induc-
tion of fluoroquinolone resistance was ascribed to the decreased
expression level of OmpF (319); however, increased production of
AcrB is likely to have played a more important role.

As expected, fluoroquinolone-resistant strains produced higher
levels of an RND pump in Serratia (15). Cosmid cloning of the
genes responsible for this phenotype identified sdeA and sdeB,
which confer resistance to fluoroquinolones, chloramphenicol,
sodium dodecyl sulfate (SDS), and ethidium (320). SdeAB’s func-
tion is dependent on the TolC-like OM protein HasF, and sdeB
inactivation increases the susceptibility to fluoroquinolones and
other drugs listed above (321). Exposure to a biocide (cetylpyri-
dinium chloride) led to a mutational upregulation of SdeAB and
thus antibiotic resistance (322). SdeAB expression is controlled by
a BadM-type repressor, SdeS (323), and a putative MarA-like reg-
ulator, SdeR (321). Another RND system (SdeCDE) requires two
paired pump genes, sdeDE, but their deletion did not seem to
affect the MICs of common antibiotics (320).The RND pump
SdeXY produces resistance to fluoroquinolones as well as many
substrates of AcrB (16). Its overexpression (with HasF participa-
tion) is responsible for tigecycline and fluoroquinolone resistance
(324). SdeY, however, has a sequence 84% identical to that of E.
coli AcrB and should more properly be called AcrB. Thus, at pres-
ent, the relative importance of AcrB and SdeB in fluoroquinolone
efflux remains unclear, and the expression levels of sdeB in clinical
isolates had no clear correlation with their fluoroquinolone resis-
tance levels (325). An MFS pump (SmfY), an SMR pump (SsmE),
and an ABC pump (SmdAB) increased the MICs of several drugs
when expressed from a plasmid in E. coli (16).

Shigella flexneri

For Shigella flexneri, the involvement of efflux, including AcrAB
overproduction, leading to high-level resistance to fluoroquino-
lones, was reported (326, 327). Inactivation of the MFS pump
MdfA-encoding gene led to an 8-fold decease in the norfloxacin
MIC (328).

Yersinia enterocolitica and Yersinia pestis

The genus Yersinia, although relatively distantly related to E. coli,
produces the classical trimeric porins OmpF and OmpC (329). It
also contains genes for RND pumps. In one study, all 41 nalidixic
acid-resistant isolates of Y. enterocolitica showed significant de-
creases in nalidixic acid MICs in the presence of 20 �g/ml PA�N,
suggesting a strong contribution of efflux (330). A Mar homolog
was identified in Y. pestis, and its overexpression increased, albeit
to a small degree, the MICs of several antibiotics, including tetra-
cycline and rifampin (331), presumably by the increased expres-
sion of the AcrB-type pump. Moreover, a homolog of a well-
known activator of acrAB transcription, Rob, increased ofloxacin
MICs �10-fold (332). Indeed, the acrAB deletion resulted in large
decreases in MICs of many antimicrobials, including aminoglyco-
sides (333). Lastly, an MFS pump, together with a KefC-like exporter,
pumped out cationic antimicrobial peptides in Y. enterocolitica, and
their deletion made cells more susceptible to novobiocin and tet-
racycline (334).
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OTHER GAMMAPROTEOBACTERIA: VIBRIO, AEROMONAS,
LEGIONELLA, AND PASTEURELLACEAE

This section examines genera and species that are known or sus-
pected to produce high-permeability trimeric porins and thus are
similar to Enterobacteriaceae in this respect.

Vibrio spp.

Vibrio spp. are outside the Enterobacteriaceae but not very far in
terms of phylogeny. V. cholerae has attracted attention as the caus-
ative agent of cholera. Its OM appears to be significantly different
from that of Enterobacteriaceae. First, its outer leaflet appears to
contain phospholipids in addition to LPS (335), which should
allow an unusually rapid permeation of large, lipophilic antibiot-
ics. Indeed, V. cholerae is far more susceptible to such agents, e.g.,
erythromycin, novobiocin, and rifampin, than are members of the
Enterobacteriaceae (336). Second, its major porins, OmpU and
OmpV, albeit belonging to the OmpF/OmpC family, are quite
different from their enterobacterial representatives in sequences
(22) and in permeability. An early study on OmpU (337) found
that its single-channel conductivity was �3 times higher than that
of E. coli OmpF, consistent with the results of a liposome swelling
assay revealing a much larger channel than that of OmpF (338).
Finally, some of the bile salts apparently bind to the channel inte-
rior and block permeation (339), suggesting that these large, pla-
nar, lipophilic molecules diffuse through the channel, at least up
to the constriction zone. These high-permeability characteristics
of the V. cholerae OM are surprising for a gastrointestinal patho-
gen but may be related to the ecology of this organism as a water
dweller.

Because of their genetic relatedness to E. coli, cloning of Vibrio
genes in E. coli was not difficult, and a number of efflux systems
have been identified in this manner. The V. cholerae genome
contains 6 RND transporters (VexAB, VexCD/BreAB, VexEF,
VexGH, VexIJK, and VexLM), and most of them require TolC for
drug efflux (340–345). VexAB seems to play a predominant role in
the efflux of antibiotics (benzylpenicillin, erythromycin, and poly-
myxin B) and detergents (cholate, SDS, and Triton X-100) (341),
although among the 6 RND systems cloned from a non-O1 strain,
VexEF conferred the strongest resistance to an E. coli host (343).
VexCD (confusingly “renamed” BreAB) is involved in bile efflux
(340) and is induced by bile (342). A drug-susceptible phenotype
could also be created by adding EPI PA�N or NMP to the parent
strain (346). VexGH shows an overlapping substrate specificity
and also contributes to the production of cholera toxin (344). In
an interesting study (345), it was shown that not only was the
expression of VexAB and VexGH enhanced by the CpxAR system,
but the expression of this system also was stimulated by the dele-
tion of efflux pumps, presumably due to the accumulation of in-
tracellular metabolites. In V. parahaemolyticus, 12 RND pumps
were identified, and when expressed in hypersusceptible E. coli,
two-thirds of them produced an MDR phenotype (347–349), al-
though the deletion of one of them, VmeAB, produced little in-
crease in drug susceptibility (347). The isolation of laboratory
mutants resistant to deoxycholate showed that VmeTUV is im-
portant for the efflux of bile salts (349).

Among the MFS transporters, VceB was the earliest discovered
drug transporter in V. cholerae (350); it occurs together with a
periplasmic accessory protein, VceA, and a TolC-like OM protein,
VceC (16), and contributes to the intrinsic levels of resistance to

deoxycholate, CCCP, pentachlorophenol, and nalidixic acid
(350). Another MFS transporter, called EmrD-3, was found by
cloning in a drug-hypersusceptible E. coli host and produced re-
sistance to various lipophilic agents, such as linezolid (351). Five
MFS transporters (each under the control of a Lys-type MfsR reg-
ulator) whose deletion causes tetracycline and bile salt hypersus-
ceptibility are known (352). V. parahaemolyticus was the organism
in which the first MATE family transporter, NorM, was discov-
ered by cloning in E. coli (353), and in V. cholerae, 5 members of
this family were described (16), including the NorM homolog
VcmA (15), which increases MICs of fluoroquinolones, ethidium
bromide, acriflavine, and doxorubicin when overproduced in E.
coli. Two MATE transporters from a multidrug-resistant V. flu-
vialis isolate provided 2-fold increases in MIC values of cipro-
floxacin and norfloxacin when expressed in E. coli (354).

Although many potential efflux transporters are known, there is
not much knowledge on their role in clinically relevant situations,
possibly because for V. cholerae, antimicrobial chemotherapy
plays only a subsidiary role to fluid repletion therapy. The inci-
dence of drug-resistant V. cholerae appears to be increasing, but
the mechanisms presumably involve plasmids and integrons in
many cases. In a study of fluoroquinolone-resistant V. cholerae
clinical isolates, decreased accumulation of norfloxacin was found
together with target gene mutations, suggesting the involvement
of efflux (15).

Aeromonas spp.

Aeromonas belongs to another order, Aeromonadales. Although
the pore-forming activity of an OmpA-like, monomeric protein
has been reported (355), this protein presumably contributes only
a minor activity to OM permeability, because OmpF/OmpC-like
trimeric porins appear to exist in the genome sequences of Aero-
monas salmonicida and Aeromonas hydrophila. The genome of A.
hydrophila contains 10 RND pump genes as well as genes for MFS,
MATE, SMR, and ABC efflux transporters (16). Apparently, an
RND system, AheABC, plays a major role in the maintenance of
the basal level of intrinsic resistance to most antimicrobials, which
is rather similar to that of E. coli, except that A. hydrophila is more
susceptible to macrolides like erythromycin and pristinamycin
(16). An SMR pump, SugE, produces resistance to tributyltin, a
compound that was used in the past as a biocide to prevent
biofouling of ships; when introduced into E. coli, this gene in-
creased resistance to chloramphenicol, tetracycline, as well as
ethidium bromide (356). Fluoroquinolone-resistant isolates
were often seen to have enhanced efflux activity (16). In con-
trast, another study found little evidence of the contribution of
efflux to fluoroquinolone resistance (357), perhaps not sur-
prisingly, because most strains had relatively low (�0.4 �g/ml)
MICs of ciprofloxacin.

Legionella spp.

Legionella pneumophila contains the major oligomeric OM pro-
tein of 28 kDa (358). Although its single-channel conductance was
low (0.1 nS) compared with that of E. coli OmpF (0.7 nS), this may
have been caused by the low salt concentration (0.1 M rather than
1 M), and the channel size is difficult to ascertain. L. pneumophila
strains show high levels of in vitro susceptibility to a variety of
antibiotics, including macrolides, rifamycins, fluoroquinolones,
aminoglycosides, and �-lactams (359), probably suggesting a lim-
ited role of either OM permeability or an efflux mechanism in
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intrinsic resistance. However, the fact that in vitro exposure of
Legionella to erythromycin or ciprofloxacin selects mostly low-
level resistance may be an indication of efflux participation (360),
while target mutation-derived moxifloxacin resistance causes
high-level MIC increases (8- to 512-fold) (361). The genomes of L.
pneumophila strains (3.4 to 3.5 Mb) are smaller than that of E. coli
K-12 (4.64 Mb) but still possess a large number of genes encod-
ing efflux pumps, membrane fusion proteins, and OM channel
proteins (362, 363). Inactivation of the TolC efflux channel
(36% identity to E. coli TolC) increases the susceptibility to
erythromycin (16-fold reduction in the MIC) and to benzalko-
nium chloride, deoxycholate, ethidium bromide, norfloxacin,
novobiocin, and rhodamine 6G (2- to 8-fold decreases in MIC
values) (362, 363). Moreover, TolC is also involved in the se-
cretion of a lipid-containing surfactant that promotes Legion-
ella motility and displays activity against Legionella (363). Given
that intracellular killing of L. pneumophila by antibiotics is re-
quired for legionellosis therapy, drug efflux could be an impor-
tant factor affecting the efficacy of in vivo antibiotic regimens.
Particularly, the multiplication of L. pneumophila within mac-
rophages has already limited the choice of antibiotics to those
that can penetrate phagocytic cells, such as macrolides, rifamy-
cins, and fluoroquinolones, which are generally good sub-
strates of typical drug pumps.

Pasteurellaceae

Pasteurella multocida. Pasteurella multocida produces a trimeric
porin, OmpH, that is remotely related to the enterobacterial
porins in sequence (364). OmpH is similar to E. coil porins in
terms of permeability on the basis of the reported single-channel
conductivity (364, 365). The genome of this organism contains
one AcrB-like transporter, and the inactivation of tolC makes the
organism susceptible to a wide range of agents (366). An Msr(E)
ABC transporter, together with the phosphotransferase Mph(E),
mediates clinically relevant resistance to macrolides, including
new veterinary ones, gamithromycin and tildipirosin (367). Ef-
flux-based tetracycline resistance genes from Pasteurella are also
usually found on plasmids (16).

Haemophilus influenzae. Because of its clinical significance
and its natural ability to be transformed by naked DNA, many
early studies were carried out by using Haemophilus influenzae. H.
influenzae produces one trimeric porin, OmpP2, which allows the
passage of larger oligosaccharides (up to 1,400 Da) than the E. coli
porins (typically excluding solutes of �600 Da) (368). The large
size of the porin channel is probably responsible for making this
organism susceptible to large, hydrophobic agents such as macro-
lides. Deficiency in this porin accounts for, at least in large part,
resistance to chloramphenicol (369) and some other agents. H.
influenzae contains a homolog of E. coli acrB, and its disruption
made the organism more susceptible to erythromycin, rifampin,
novobiocin, and other toxic agents (370). A later study suggested
that AcrAB acted together with TolC and showed that the system
also pumps out additional compounds such as ampicillin, fusidic
acid, linezolid, puromycin, trimethoprim, cholate, Triton X-100,
rhodamine 6G, and hexadecyltrimethylammonium bromide
(371). A MATE family pump was cloned and produced resistance
when expressed in an efflux-deficient E. coli host (16); however, its
inactivation in H. influenzae produced little effect on antimicro-
bial susceptibility (371).

When a number of clinical isolates were studied for the accu-

mulation of azithromycin with and without the proton conductor
CCCP, azithromycin-resistant strains tended to show a higher
level of accumulation with CCCP, suggesting a large contribution
of efflux (372). Similar results were also obtained for the efflux of
telithromycin (16). There has been a rapidly increasing prevalence
of ampicillin-resistant clinical isolates that do not produce �-lac-
tamase. Although most of them have mutations in the target pen-
icillin-binding proteins, in a good portion of strains, frameshift
mutations in the negative regulator AcrR were discovered, thus
suggesting the increased production of AcrAB (16, 373). Isolates
showing reduced susceptibility to the formylase inhibitor LBM415
often had mutations in acrR, and such mutations were selected by this
agent in vitro (374).

GAMMAPROTEOBACTERIA: PSEUDOMONAS,
ACINETOBACTER, AND STENOTROPHOMONAS

The gammaproteobacteria Pseudomonas, Acinetobacter, and
Stenotrophomonas are very different from those discussed above, as
they do not produce the high-permeability trimeric porins, and
the effective OM permeability barrier makes their RND efflux sys-
tems highly efficient.

Pseudomonas aeruginosa

In its natural habitat as well as in the hospital, the notorious op-
portunistic pathogen Pseudomonas aeruginosa is often exposed to
fluctuating and hostile external conditions. To maintain cell ho-
meostasis and thrive in challenging environments, it has evolved a
strong and selective OM permeability barrier whose effectiveness
is reinforced by broad-spectrum exporters. No fewer than 12 dif-
ferent RND-type drug efflux systems have been recognized and
characterized in strain PAO1. Although most of these multispe-
cific pumps accommodate antibiotic molecules and confer some
degree of resistance when overexpressed from recombinant plas-
mids, only a minority of them appear to be therapeutically rele-
vant. Indeed, significant constitutive or drug-induced expression
levels are required for efflux pumps to contribute to intrinsic
and/or acquired resistance to antimicrobial agents. Involvement
of other families of transporters in resistance to antibiotics ap-
pears to be restricted to a few examples (MATE-type transporter
PmpM and SMR-type transporter EmrE) (16, 164).

OM permeability. P. aeruginosa is characterized by its very low
OM permeability due to the presence of the slow porin OprF in-
stead of the classical OmpF/OmpC trimeric porins, as mentioned
above (179, 181, 182) and as discussed elsewhere (22). However,
this low-OM-permeability property alone does not sufficiently
explain the intrinsic MDR of this organism (11, 12, 375) and may
also explain (together with the envelope-stabilizing function of
OprF) the lack of or rare detection of OprF deficiency in clinical
isolates (376–378). On the other hand, P. aeruginosa possesses
specific channels, such as OprB, specific for glucose uptake, and
OprD, specific for the diffusion of basic amino acids and peptides
(22). The latter channel is the primary channel for the entry of
carbapenems across the OM, and the reduced expression or loss of
OprD has been frequently observed in carbapenem-resistant clin-
ical isolates (379–384), which may also display upregulated drug
efflux systems, such as MexEF-OprN, due to the shared regulation
of the expression of OprD and MexEF-OprN (carbapenem sus-
ceptibility is unlikely affected by MexEF-OprN) (see Regulation of
Multidrug Efflux Pumps, below) (385–387).

RND efflux pumps. (i) MexAB-OprM. Constitutively ex-
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pressed, the MexAB-OprM pump was the first RND system char-
acterized in P. aeruginosa (10, 13, 388), although a link between
the development of MDR and increased amounts of an OM pro-
tein, OprM, had previously been established in in vitro-selected
mutants (389) and was also analyzed together with other overpro-
duced 50-kDa OM proteins (11). Reminiscent of E. coli AcrAB-
TolC, MexAB-OprM displays an incredibly wide substrate speci-
ficity that encompasses structurally very different antibiotics (e.g.,
�-lactams, including �-lactamase inhibitors and certain carbap-
enems [except imipenem], aminoglycosides [with low-ionic-
strength medium], [fluoro]quinolones, tetracyclines, tigecycline,
macrolides, amphenicols, novobiocin, sulfonamides, trimethoprim,
cerulenin, and thiolactomycin) (10–13, 16, 164, 389–394) as well as
a series of amphiphilic molecules, disinfectants, dyes, solvents,
detergents, and C8 to C14 3-oxo-acyl-homoserine lactones in-
volved in quorum sensing (395–400). (A recent study also showed
the quorum sensing inhibitors of nonnative N-acylated L-homo-
serine lactones and derivatives as the substrates of MexAB-OprM
[401].) This system thus provides P. aeruginosa with protection
against multiple inhibitors that can be encountered in different
environments.

MexAB-OprM-overproducing mutants can be readily gener-
ated by in vitro selection in the presence of an antibiotic(s) (11,
389, 402), and in vitro studies on reference strains have shown that
any mutational event inactivating the mexR (also called nalB),
nalC, or nalD gene or impairing the activity of their respective
products (MexR, ArmR, and NalD [see Regulation of Multidrug
Efflux Pumps, below]) results in the overexpression (�3-fold) of
mexAB-oprM with a concomitant increase in resistance (2- to 16-
fold MIC increases) to all the pump substrates compared to base-
line levels, with nalC mutants being in general 2-fold more sus-
ceptible than the nalB and nalD mutants (393, 403–409). Similar
findings were reported for phenotypically but non-genetically
characterized multidrug-resistant mutants selected in vitro with
various antibiotics (11, 12, 392, 402, 410, 411).

Because clinical strains often accumulate multiple resistance
mechanisms, MexAB-OprM overproducers may have quite atyp-
ical drug susceptibility profiles and therefore may be underrecog-
nized by medical microbiologists. Methods aimed at measuring
the intracellular accumulation of pump substrates are not amena-
ble to routine laboratory practice and not specific because of the
large overlaps between RND pump substrate specificities. In sev-
eral studies, systematic quantification of mexA and/or mexB
transcripts by reverse transcription-quantitative PCR (RT-qPCR)
demonstrated that these mutants are very prevalent among mul-
tiresistant non-cystic fibrosis strains (16, 412–419), including
those producing reduced susceptibility to carbapenems (380, 381,
383, 420, 421) and those producing ESBLs or metallo-�-lactama-
ses (385, 422). Rates of MexAB-OprM overproducers of near 50%
were recorded even in subpopulations of isolates exhibiting a re-
duced susceptibility to ticarcillin (�32 �g/ml) (423). These re-
sults agree with those of other experimental approaches based on
the use of EPIs (e.g., PA�N and MC-04,124) (60, 424). Interest-
ingly, a detailed analysis of 12 multidrug-resistant MexAB-OprM-
overproducing strains revealed an equivalent distribution of nalB,
nalC, and nalD mutants among them, highlighting the fact that all
these mutant types may emerge in patients (413). Similar data
were reported by different investigators (380, 425).

In the absence of other known resistance mechanisms (e.g.,
enzymatic drug inactivation and drug target alterations), MexAB-

OprM dysregulation decreases the susceptibility of clinical isolates
to substrate antibiotics from 2- to 8-fold compared to baseline
levels (394, 415, 426). According to the susceptibility breakpoints
from the Clinical and Laboratory Standards Institute (CLSI)
(1029), changes in strain categorization resulting from a maximal
effect of the efflux mechanism (8-fold) are limited to a small num-
ber of antipseudomonal agents, such as ticarcillin (from S [drug
susceptible] to I [intermediate] or R [resistant]), aztreonam (from
S to I or R), meropenem (from S to I), ciprofloxacin (from S to I),
and levofloxacin (from S to I). Whether this modest impact of
MexAB-OprM on drug MICs is therapeutically relevant still
awaits to be clarified by clinical investigations (427). Nevertheless,
it can reasonably be assumed that even low-level-resistant mu-
tants will survive chemotherapy better than wild-type bacteria if
inappropriate agents are used to treat the infection or if only sub-
optimal drug concentrations reach the infection site because of
limited diffusion in vivo or an insufficient antibiotic dosage. As
demonstrated in an animal model of infective endocarditis, man-
agement of difficult-to-treat infections requires higher doses of a
�-lactam if MexAB-OprM-upregulated mutants develop (428).

Another important therapeutic issue relates to whether over-
expressed MexAB-OprM can potentiate other resistance mecha-
nisms and thus can enable P. aeruginosa to become recalcitrant to
more antibiotic treatments. This does not seem to be the case, as
interplays between the pump (active drug efflux) and the �-lacta-
mase AmpC (drug inactivation) or mutations in type II topoisom-
erases (reduced drug target affinity) result mostly in cooperative
rather than synergistic effects on drug resistance levels (383, 412,
415, 417, 429). As shown in in vitro mutants, the overproduction
of MexAB-OprM causes only a slight increase in the MIC of car-
benicillin when the enzyme AmpC is derepressed (430) (however,
since either MexAB-OprM or derepressed AmpC production
alone has resulted in high-level carbenicillin resistance, it is appar-
ently difficult for these combined mechanisms to further in-
crease the carbenicillin resistance level). Similarly, the coex-
pression of two RND pumps simultaneously (e.g., MexAB-
OprM plus MexXY or MexEF-OprN) at the most tends to
produce additive effects on the MICs of shared substrates, as ex-
emplified with fluoroquinolones (25, 377, 413, 431). Synergistic
interactions are expected to occur when multicomponent efflux
pumps (e.g., RND systems) and singlet pumps (e.g., TetA/C) op-
erate coordinately to extrude substrates from both the cytoplasm
and the periplasmic space up to the external medium (25). Since
MexAB-OprM is able to accommodate some carbapenems such as
meropenem (252, 402, 430, 432), its contribution to the acquired
resistance of clinical strains to these agents was investigated and
found to be modest with respect to other mechanisms such as the
loss of OprD and carbapenemase production (380, 381, 383, 384).
Thus, the role of the pump appears to be obscured by more effi-
cient drug-specific resistance mechanisms in terms of the resis-
tance phenotype of the mutants. However, their role with respect
to resistance emergence should not be underestimated, for exam-
ple, in the development of resistance to pump substrate antimi-
crobials such as fluoroquinolones (433).

(ii) MexXY-OprM(OprA). The MexXY proteins, which are en-
coded by a two-gene locus, need to interact with an OM compo-
nent in order to form a functional tripartite pump (434–436).
Despite the fact that MexXY may accommodate various OM
channels (e.g., OpmB) to actively export substrates, OprM ap-
pears to be the primary partner in most strains (434, 435, 437). In
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the phylogenetically distinct clade PA7, the mexXY operon con-
tains a third gene encoding an OprM-like protein, named OprA,
which somewhat surprisingly shows a higher level of sequence
similarity with OM channels of Burkholderia efflux pumps than
with those of P. aeruginosa (438). In the PA7-related strains, the
MexXY proteins seem to cooperate with both OprM and OprA, as
each of the latter can compensate for the genetically engineered
suppression of the other. While the MexXY-OprM/OprA system
is able to transport aminoglycosides, fluoroquinolones, macro-
lides, tetracyclines, tigecycline, and zwitterionic cephalosporins
(cefepime and ceftobiprole) (393, 434–436, 439), its contribution
to natural resistance is restricted to those agents able to induce
mexXY(oprA) expression (219, 434). This occurs when bacteria
are exposed to subinhibitory concentrations of ribosome-target-
ing antibiotics, including chloramphenicol, a poor substrate, if at
all, of the pump (440, 441).

Stable overexpression of the MexXY proteins provides P.
aeruginosa a 2- to 16-fold-higher level of resistance to all the pump
substrates, with OprM being present in amounts apparently suf-
ficient to stoichiometrically cooperate with both the MexXY and
MexAB proteins in non-PA7-related strains. The weak promoter
identified ahead of oprM within the mexAB-oprM operon (442)
could possibly account for an excess of OprM molecules relative to
MexAB, thus allowing the interaction of OprM with other extru-
sion systems without impacting the activity of MexAB-OprM by
titration. MexXY(OprA)-overproducing mutants can be easily se-
lected in vitro and in vivo by substrate antibiotics (393, 439, 443,
444) or protein synthesis inhibitors (445), which is consistent with
the increased prevalence, sometimes �80%, of such mutants in
cystic fibrosis (436, 446–451) and non-cystic fibrosis (384, 385,
414, 416, 417, 420–423, 429, 431, 452) patients worldwide. The
abundance of reactive oxygen species in the cystic fibrosis lung
environment might explain the high rates of resistant mutants
with this pathology (453). Supporting this notion, it was observed
that prolonged exposure of P. aeruginosa to H2O2 promoted the
emergence of MexXY overproducers in vitro (454). Differential
resistance (MIC ratio, �4) to cefepime and ceftazidime, which are
good and poor substrates of MexXY/OprM(OprA), respectively,
has been attributed to pump derepression in some non-cystic fi-
brosis isolates (425, 455, 456).

Three types of MexXY-overproducing mutants have been
characterized so far. In so-called agrZ mutants, the mexZ gene and
its product are compromised by a number of nonspecific genetic
events (e.g., indels and point mutations) (425, 439, 443, 446–448,
450, 457). In addition to mutations causing mexZ disruption,
some generate single amino acid substitutions in the DNA-bind-
ing domain, the dimerization domain, or the structure of MexZ,
abrogating its repressor activity (416, 452, 458, 459). A second
group of mutants, dubbed agrW1, was defined in line with various
defects in ribosomal proteins such as L1 (436), L25 (460), L21 and
L27 (461), or components of the Fmt bypass (methionyl-
tRNAfMet formyltransferase FolD) (445) that ultimately affect
protein synthesis. Reminiscent of the effects of ribosome-target-
ing inhibitors, any mutation impairing the translation process
seems to be able to induce PA5471 (ArmZ) expression and sub-
sequently the mexXY(oprA) operon via the MexZ-ArmZ inter-
action. Finally, in the third group of mutants, named agrW2,
mutational activation of the sensor ParS or the response regu-
lator ParR of the two-component system ParRS leads to con-
stitutive expression of the efflux operon (384, 444). A detailed

analysis of a collection of non-cystic fibrosis isolates showing
moderate, nonenzymatic resistance to aminoglycosides demon-
strated the occurrence of the three types of mutants (agrZ, agrW1,
and agrW2) among clinical strains (452). In cystic fibrosis pa-
tients, the agrZ type seems to predominate over the other two
(446–448).

With providing a 2- to 16-fold increase in resistance, the
MexXY-OprM(OprA) pump is not expected to change the classi-
fication of most clinical strains from S to I or R regarding the
pump substrates, unless additional mechanisms are expressed.
Therefore, the clinical impact of this low to moderate level of
resistance remains uncertain, and as for MexAB-OprM, it is likely
to depend upon individual patient conditions and treatment op-
tions. Very few studies have examined the potential role of
MexXY/OprM(OprA) in clinical outcomes. In a rabbit experi-
mental model of pneumonia treated with intravenous administra-
tion of tobramycin, the pump was considered to have a modest
influence on animal survival and posttreatment bacterial loads
(462). However, tobramycin itself appeared to have poor bacteri-
ological efficacy in this model, contrasting with the quite high
survival rates. The increased prevalence of MexXY(OprA) over-
producers in the clinical setting, as reported above, can be inter-
preted as resulting from a positive, adverse effect of the efflux
system on either the resilience of P. aeruginosa to chemotherapy
(i.e., drug resistance) or its adaptation to the host (e.g., resistance
to the immune system or improved fitness). Reinforcement of
efflux activity due to mexXY(oprA) derepression may be just one
of the multiple means by which the pathogen is able to combine to
gradually increase its resistance to potent antimicrobials (460).
For instance, the simultaneous overexpression of multiple efflux
pumps (e.g., MexAB-OprM, MexXY, and MexEF-OprN) in con-
junction with other resistance mechanisms is common in hospital
strains (11, 413, 431, 464).

(iii) MexCD-OprJ. The MexCD-OprJ system is generally not
expressed in wild-type strains (465) but is inducible by mem-
brane-damaging agents (see Regulation of Multidrug Efflux
Pumps and “Bacterial Stress Responses,” below) (466, 467). Over-
production of the MexCD-OprJ pump in nfxB mutants causes
increased resistance to fluoroquinolones, zwitterionic cephalo-
sporins (cefepime and cefpirome), macrolides, chloramphenicol,
and tetracyclines concomitant with hypersusceptibility to ami-
noglycosides and other �-lactams (15, 440, 465, 468). This
overexpression results in an apparently deficient production of
MexAB-OprM and/or impaired drug inducibility of the intrin-
sic �-lactamase AmpC, the effects of which were each proposed to
account for the higher level of susceptibility of the nfxB mutants to
�-lactams (469, 470), although this issue seems to be controversial
(471). In dense bacterial communities such as those occurring in
cystic fibrosis patients, the nfxB mutations could be less detrimen-
tal to P. aeruginosa than in planktonic cells. Some data indeed
suggest that in nfxB mutants, the enzyme AmpC leaks out of the
cells and concentrates in the surrounding milieu rather than in the
periplasm, thus generating whole protection for cells of the bio-
film (472). This may be relevant in vivo, as important extracellular
AmpC activities have been measured in the sputa of cystic fibrosis
patients (473). Whereas the mexXY genes (and their products) are
expressed at similar levels in nfxB mutants and wild-type strains,
MexCD-OprJ appears to compromise the MexXY/OprM(OprA)
drug transport activity and associated resistance to aminoglyco-
sides by downmodulating the production of the protein OprM
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(472). Analysis of fluoroquinolone-resistant clinical strains iden-
tified only a minority of nfxB mutants by comparison with
mutants harboring quinolone target alterations (GyrA/B and
ParC/E) or overexpressing other efflux pumps [e.g., MexAB-
OprM, MexXY/OprM(OprA), and MexEF-OprN] (15, 431, 474).
Likewise, MexCD-OprJ overproduction was infrequent in �-lac-
tam-resistant strains (380, 421, 423), including those exhibiting
increased MICs of the pump substrate cefepime relative to those
of ceftazidime (425, 455). Microbiological follow-up of one me-
chanically ventilated patient treated with two substrates of
MexCD-OprJ, namely, ciprofloxacin (14 days) and cefepime (19
days), revealed the emergence of nfxB mutants over the time,
which accounted for a change of bacteria from S to I or R with
regard to their susceptibility to fluoroquinolones (CLSI break-
points) (475). Interestingly, the overexpression of MexCD-OprJ,
as with that of MexAB-OprM or MexXY, occurred in 60% of
carbapenem-resistant clinical isolates (476). Moreover, although
MexCD-OprJ overproduction can be part of the complex resis-
tance mechanisms (464, 476, 477), the genotypic alterations may
not correlate with the phenotype (478), likely attributed at least
partly to global changes in the physiology and metabolism caused
by nfxB mutations (479).

(iv) MexEF-OprN. In vitro selection of P. aeruginosa mutants
cross-resistant to (fluoro)quinolones, chloramphenicol, trim-
ethoprim, and carbapenems (imipenem) while being hypersus-
ceptible to other �-lactams and to aminoglycosides was reported
in the early 1990s (480, 481). This type of mutant, named nfxC
mutants, is readily selected by fluoroquinolones and chloram-
phenicol but not by carbapenems (433, 481, 482). The observed
resistance phenotype partly relies upon the overproduction of
MexEF-OprN, which exports only (fluoro)quinolones, chloram-
phenicol, trimethoprim, and tetracycline (483, 484). nfxC mu-
tants have rarely been reported in clinical settings (421, 431, 485)
and even failed to be detected in several studies systematically
investigating clinical resistance mechanisms (385, 414). Such a
low prevalence can be attributed to �-lactam hypersusceptibility
and/or the impaired virulence of these bacteria, although addi-
tional resistance mechanisms may mask the loss of �-lactam re-
sistance in some strains (431). However, these mutants have been
found in cystic fibrosis and other patients (478, 486).

(v) Other RND pumps. There are also additional RND systems
in P. aeruginosa, and they are known to often require OprM for
efflux activity (16). However, their clinical relevance remains es-
sentially unknown in spite of their involvement in resistance or
virulence. MexJK functions with OprM or another OM protein,
OpmH, for pumping out erythromycin and triclosan, respectively
(16). Several cloned RND pumps were able to confer resistance to
a P. aeruginosa or E. coli host deficient in major RND pumps:
MexMN-OprM for resistance to macrolides and fluoroquinolo-
nes (487); MexPQ-OpmE for resistance to amphenicols (487);
MexVW-OprM for resistance to macrolides, chloramphenicol,
fluoroquinolones, and tetracycline (488); and MuxABC-OpmB
(with two RND components, MuxBC) for resistance to aztreo-
nam, macrolides, novobiocin, and tetracyclines (489). The inacti-
vation of MuxABC-OpmB increases resistance to carbenicillin
(490). TriABC-OpmH, with an unusual property of requiring two
periplasmic adaptor proteins, TriA and TriB, pumps out triclosan
(491), while the CzcCBA (CzrCBA) system is involved in resis-
tance to cadmium, cobalt, and zinc salts (492, 493).

Acinetobacter spp.

Acinetobacter spp. and particularly those belonging to the A. bau-
mannii-A. calcoaceticus complex have emerged globally as com-
mon nosocomial and community pathogens with high levels of
MDR or pandrug resistance (494, 495). The modest genome size
of A. baumannii of ca. 4 Mb has shown the acquired genetic diver-
sity (including at least two dozen genomic resistance islands [A.
baumannii resistance islands {AbaR}] of 22 to 121 kb) that pro-
vides the molecular basis of almost all types of resistance mecha-
nisms and renders the organism significantly resistant to a large
number of antibiotics, biocides, and heavy metals (496–502).
Multidrug-resistant isolates or their epidemic clones are fre-
quently isolated from patients after treatment with ciprofloxacin,
co-trimoxazole, colistin, imipenem, and/or tigecycline (503–506),
highlighting the rapid in vivo evolution of MDR in Acinetobacter.

OM permeability. Acinetobacter has an OM of exceptionally
low permeability that is similar to that of P. aeruginosa and �100-
fold lower than that of E. coli (to cephalosporins) (183, 507). This
is attributed to the lack of a high-permeability trimeric porin
found in Enterobacteriaceae (183, 507). Being a close homolog of
E. coli OmpA and P. aeruginosa OprF, the major OM protein of A.
baumannii (508), monomeric OmpA, was experimentally shown
to be the principal nonspecific slow porin (183). However, as with
other slow porins such as OprF (180), the majority conformer of
OmpA folds as a two-domain protein that is needed for the stabi-
lization of the cell envelope. Thus, the porin function of OmpA is
difficult to decipher by using OmpA deletion mutants, which par-
adoxically show reduced MICs of most antibiotics (183, 509) due
to the destabilization of the envelope. It required the precise de-
termination of the OM permeation rates of zwitterionic cephalo-
ridine, which is unlikely to permeate across the bilayer domain of
the OM, to show that ompA deletion results in a decrease of OM
permeability (183). Plant extracts from Holarrhena antidysen-
terica permeabilize the OM of extensively drug-resistant isolates
and thus restore certain activities of antibiotics (510), similar to
those observed with other plant extracts, including coriander oil,
geraniol, and ginger compounds (511, 512).

A. baumannii also possesses channel proteins specific to some
substrates. CarO (for carbapenem resistance-associated OM pro-
tein) functions as an influx channel for carbapenems with a dem-
onstrated imipenem binding site (513–516), similar to P. aerugi-
nosa OprD, which is specific for the uptake of basic amino acids
and carbapenems, although OprD and CarO share no recogniz-
able homology (190, 514). CarO is also involved in the influx of
L-ornithine and basic amino acids (517). Indeed, the absence of
CarO expression, due to gene disruption by an ISAba10 or
ISAba825 insertion, correlates well with carbapenem resistance in
clinical isolates (502, 514, 518). The observation of extensive ge-
netic diversity of carO within clinical populations suggests hori-
zontal gene transfer as well as assortative gene recombination,
likely providing a strategy for A. baumannii survival under differ-
ent environmental conditions (519). The synergistic interplay be-
tween the loss of CarO and pump overproduction contributes to
MDR phenotypes (502, 506). Moreover, the loss of additional OM
proteins of 31 to 36 kDa is also reported to be associated with
carbapenem resistance (520–522). In response to a physiological
level of 200 mM NaCl, there is an upregulation of 14 distinct
transporter genes, while the expression of carO and 31- to 36-kDa
OM protein genes is downregulated. NaCl can induce significant
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tolerance to aminoglycosides, carbapenems, quinolones, and
colistin (523).

RND efflux pumps. There are a large number of studies that
have investigated the role of Acinetobacter efflux pumps in resis-
tance to clinically relevant antibiotics and also to biocides, dyes,
and detergents (16, 184). Three RND systems, AdeABC, AdeFGH,
and AdeIJK, have been well characterized. AdeABC is apparently
not well expressed in wild-type strains (524) but contributes sig-
nificantly to acquired MDR (including biocide resistance) in clin-
ical isolates obtained worldwide (506, 525–534). These contribu-
tions include resistance to tigecycline, a major alternative drug for
treating Acinetobacter infections, in isolates covering epidemic
clones (502, 526, 531, 533, 535–538). In vitro exposure of suscep-
tible isolates to tigecycline resulted in a �10-fold tigecycline MIC
increase that was accompanied by AdeABC hyperproduction
(536). There was a difference of tigecycline MICs of 16-fold be-
tween isogenic parental and AdeABC-hyperproducing strains
(184). A nearly 30-fold overexpression of adeB was observed for
tigecycline-nonsusceptible isolates (533). Thus, although tigecy-
cline displays activity against isolates possessing tetracycline-spe-
cific resistance mechanisms (ribosomal protection and efflux)
(539), broad-substrate-specificity RND pumps play a key role in
the emergence of tigecycline resistance in Acinetobacter spp., sim-
ilar to observations for many other Gram-negative bacteria (16,
138, 268, 310, 312, 324, 393, 540). (Additionally, non-pump-me-
diated tigecycline insusceptibility occurred due to a deletion mu-
tation in the trm gene that encodes S-adenosyl-L-methionine-de-
pendent methyltransferase [541], showing the complexity of
tigecycline resistance mechanisms.) AdeABC overproduction is
also seen in carbapenem-resistant A. baumannii isolates (504,
538).

AdeIJK contributes to both intrinsic and acquired MDR (502,
528, 530, 533, 542, 543). Its inactivation in a wild-type strain
caused mostly 4- to 16-fold reductions of MICs of �-lactams (az-
treonam, ceftazidime, cefepime, and ticarcillin), chlorampheni-
col, clindamycin, erythromycin, fluoroquinolones (norfloxacin
and ciprofloxacin), and tetracyclines (tetracycline, minocycline,
and tigecycline) (184, 542). AdeIJK also mediates resistance to
biocides, including the frequently used biocides chlorhexidine
and triclosan and other disinfectants in hospitals (530, 544). In
vitro selection of AdeIJK-overproducing mutants by triclosan was
recently demonstrated (544). A synergistic interplay between Ad-
eIJK and AdeABC was observed with resistance to chloramphen-
icol, fluoroquinolones, and tetracyclines, including tigecycline
(184). Recently, the efflux properties of the AdeABC and AdeIJK
systems were compared with those of the E. coli AcrAB-TolC
pump, and important activity and substrate differences were iden-
tified (545). Expressed in a heterologous E. coli host, the AdeABC
and AdeIJK pumps were both able to pump out �-lactams, and
this activity is masked in Acinetobacter due to endogenous �-lac-
tamases. AdeABC is more effective than AcrAB-TolC in the extru-
sion of tetracycline but weaker in the efflux of lipophilic �-lac-
tams, novobiocin, and ethidium bromide. AdeIJK is remarkably
more active in pumping out multiple agents (except erythromy-
cin) (545).

AdeFGH was initially identified through a microarray assess-
ment of in vitro-selected multidrug-resistant mutants deficient in
AdeABC and AdeIJK (546). This pump mediates acquired MDR
and shows a broad substrate profile, including fluoroquinolones
and tigecycline (184, 547). Although its clinical significance re-

mains largely unknown, AdeFGH was the most overexpressed
RND pump in isolates from Canadian hospitals (532).

AdeA-AdeA2-AdeB (containing a pair of AdeAs) is a newly
identified AdeAB homolog involved in tigecycline resistance
(548). Another putative RND pump, AdeT, possibly involved in
aminoglycoside resistance (16), was further confirmed to be pres-
ent in the genomes of two multidrug-resistant isolates (500).
Many other non-A. baumannii species of Acinetobacter also often
possess homologs of RND pumps (16, 528, 543, 549).

The critical role of RND pumps in MDR in Acinetobacter em-
phasizes the need to identify drug candidates that bypass or inhibit
efflux mechanisms. Several studies have investigated the potenti-
ation of anti-Acinetobacter activity by EPIs, which often included
PA�N and NMP, which themselves have MIC values of �400 and
200 to �400 �g/ml, respectively (527, 550, 551). At a lower con-
centration of 25 �g/ml, their effect on reversing resistance is quite
limited, while at a higher concentration of 100 �g/ml, NMP has a
stronger effect on restoring drug susceptibility than that of PA�N
(550); this difference is likely to be due to the poor permeation
across the OM by NMP, in contrast to PA�N, which permeates
this membrane by perturbing its structure (see Efflux Pump In-
hibitors, below). In other studies, PA�N at 10 �g/ml decreased the
MIC values of chloramphenicol, clindamycin, and trimethoprim
against clinical isolates regardless of the adeFGH expression status
mostly 2- to 4-fold (552), while PA�N at 20 �g/ml reduced the
nalidixic acid MIC up to 16-fold but displayed little effect on cip-
rofloxacin susceptibility (553). PA�N and NMP, each at 100 �g/
ml, restored susceptibility to fluoroquinolone (2- to 16-fold re-
duction of MICs) and tigecycline (mostly by a 2-fold MIC
decrease) (554). Apparently, these EPIs have a stronger effect on
resistance reversal with agents that have relatively high MIC val-
ues, such as chloramphenicol, clarithromycin, clindamycin, lin-
ezolid, rifampin, and trimethoprim (552, 553, 555), agents whose
OM penetration is likely to be slow. Intriguingly, one study re-
vealed that NMP at 64 �g/ml increased the tigecycline MIC 2-fold,
although no effect on susceptibility to doxycycline, minocycline,
and tetracycline was observed (551). While PA�N at 25 �g/ml
decreased rifampin MIC values against rifampin-resistant isolates
containing no mutations in the rpoB gene by 16- to 32-fold, NMP
at 100 �g/ml showed little effect on rifampin susceptibility (555).

By using a multidrug-resistant isolate, one study tested the ef-
fects of a large number of EPIs (at 0.5� MIC), including not only
CCCP (not an EPI per se), PA�N, and NMP but also omeprazole,
phenothiazines (chlorpromazine, prochlorperazine, and proma-
zine), reserpine, and verapamil (556), on antibiotic susceptibility.
Although all agents tested showed decreased ethidium bromide
accumulation in intact cells, PA�N, NMP, and phenothiazines
were the only agents that restored susceptibility to certain antibi-
otics by an �8-fold decrease in the MIC values. Omeprazole and
verapamil showed either no effect on antibiotic susceptibility or
an antagonistic impact on tigecycline susceptibility (i.e., an in-
crease of up to 128-fold MIC) (556). Similarly, three mammalian
proton pump inhibitors, omeprazole, lansoprazole, and panto-
prazole, increased tigecycline MIC values (up to �128-fold) for all
six ESKAPE pathogens, including A. baumannii, in a concentra-
tion-dependent manner (557). Although the mechanism of this
increase in tigecycline MICs is not clear, it should be noted that
some compounds can actually enhance the efflux of other drugs
through AcrB (94).

Non-RND efflux pumps. An MFS pump, AmvA, shows a broad
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substrate specificity, including both antibiotics and disinfectants,
and its expression is detectable in clinical isolates (558). AbeM and
AbeS pumps that belong to the MATE- and SMR-type exporters,
respectively, also accommodate a number of drug substrates (16,
162). AbeM hyperexpression (with moderately increased expres-
sion levels of AdeABC and AdeIJK) was observed in imipenem-
resistant isolates (559). Three additional AbeM homologs,
AbeM2, -3, and -4, were also identified, with no demonstrated role
of AbeM4 in MDR (560). Although the clinical importance of
AbeM pumps remains unknown, the abeM gene was used with
other resistance genes (adeB, adeR, ampC, and ompA) to assess the
genetic linkage of multidrug-resistant endemic isolates (529).

Besides these MDR pumps, the MFS pump CraA specifically
provides resistance to chloramphenicol (�128-fold MIC in-
crease) (561). Its elevated expression occurs in response to NaCl
induction (523). Tetracycline-specific pumps such as Tet(A),
Tet(B), and Tet39 were also found (16) and were frequently en-
coded both in chromosomal genomic resistance islands and by
plasmids (496, 500, 562). Plasmid-borne tet(B)-tetR genes were
associated with the ISCR2 mobile element in multidrug-resistant
isolates (562), suggesting possible rapid horizontal resistance
spread. The copresence of the Tet(A) pump and Tet(M) for ribo-
somal protection was also noted (16). Lastly, a new type of efflux
pump, AceI, was found to mediate resistance to chlorhexidine
(563). Chlorhexidine itself also induces the expression of AceI and
AdeABC. AceI belongs to the bacterial transmembrane pair family
and is grouped as a prototype member of the proteobacterial chlo-
rhexidine efflux family (563). Similarly, the exposure of Acineto-
bacter baylyi to chlorhexidine also induced resistance to chlorhexi-
dine and oxidants (564), which could potentially be attributed to
efflux pumps.

Stenotrophomonas maltophilia

Stenotrophomonas maltophilia, found in various environments,
including hospital patients and animal sources, is a key emerging
opportunistic pathogen in humans that is highly versatile and
adaptable. Its genome contains genes encoding numerous major
mechanisms of resistance, including drug efflux pumps (565,
566). The MDR phenotypes are attributed to the interplay be-
tween low OM permeability (567) and efflux mechanisms (15).
The reduction of LPS synthesis is associated with modestly in-
creased susceptibility to several antibiotics (568). The efflux
mechanism was initially suggested by the selection of multidrug-
resistant isolates by any of several structurally unrelated agents
(565, 569). Eight RND-type Sme systems and several other types
of drug exporters have been identified (570).

The first RND pump, SmeABC, identified in this species via the
construction of a cosmid-based genomic library (571), is attribut-
able to acquired MDR (572, 573). The subsequently characterized
SmeDEF pump plays a major role in both intrinsic and acquired
MDR in clinical isolates from various sources (392, 572, 574–576),
and its overexpression can be readily selected in vitro by conven-
tional antibiotics and also by biocides such as triclosan (565, 577,
578). Inactivation of SmeDEF usually leads to a 2- to 8-fold
reduction of the MIC values of fluoroquinolones (including
ciprofloxacin, clinafloxacin, and moxifloxacin), tetracyclines
(including minocycline and tigecycline), macrolides (erythro-
mycin and azithromycin), chloramphenicol, novobiocin, dyes,
and SDS against wild-type and multidrug-resistant isolates (574).
In mutants carrying a genetic inactivation of the class B L1 metal-

lo-�-lactamases and class A L2 �-lactamases, the role of RND
pumps in resistance to aztreonam, piperacillin, cefepime, and cef-
pirome (4-fold MIC increases) was demonstrated (565, 571, 574).
SmeC overexpression was also associated with L2 �-lactamase
production (571). Intriguingly, SmeDEF disruption has little or
only a minimal impact on susceptibility to penicillins, cephalo-
sporins, carbapenems, and monobactams (i.e., no or merely a
2-fold MIC decrease in mutants that are also deficient in L1 and L2
�-lactamases) and does not alter rifampin and trimethoprim sus-
ceptibility (574).

There are 4 additional RND Sme pumps that all lack a geneti-
cally linked OM component (i.e., SmeGH, SmeIJK [paired SmeJK
pump], SmeMN, and SmeYZ) and 2 RND pumps containing an
OM protein (SmeOP-TolC and SmeVWX) (570, 579). Hypersus-
ceptibility data with the selective inactivation of the SmeC or
SmeF OM protein suggest that these OM proteins may function in
multiple drug exporters (571, 574), similar to the situations ob-
served for OprM of P. aeruginosa or TolC of E. coli. Although a
TolC homolog was also identified in S. maltophilia (580), it is
phylogenetically distinct from the SmeC, SmeF, and SmeX OM
channels, and hence, its role in any Sme system (except SmeOP
[579]) remains unknown. The tolC gene and an upstream pcm
gene (encoding protein-L-isoaspartate O-methyltransferase) likely
form the pcm-tolC operon, but only TolC inactivation renders the
organism susceptible to aminoglycosides and macrolides (580). In
fact, the Smlt3926 gene, encoding a TetR repressor, SmeRo, of
SmeOP is located immediately upstream of the pcm-tolC operon,
and thus, there is a 5-gene cluster comprised of tolC-pcm-smeRo-
smeO-smeP. SmeOP-TolC was recently demonstrated to provide
resistance to several antibiotics, CCCP, dyes, and detergents
(579). The simultaneous hyperexpression of SmeJK (forming one
exporter) and SmeZ pumps increases the substrate profiles of a
clinical isolate (581). Inactivation of SmeJK significantly increases
the susceptibility to aminoglycosides (amikacin, gentamicin, ka-
namycin, and tobramycin) and the macrolide leucomycin (8- to
16-fold reduction in MIC values), yet the disruption of either
SmeJ or SmeK produces merely a 2-fold decrease in the MICs of
the tested aminoglycoside agents (582), likely suggesting that
SmeJ or SmeK alone may still be functional.

S. maltophilia also possesses ABC and MFS transporters (570).
The ABC-type tripartite FuaABC system mediates fusaric acid-
inducible resistance to fusaric acid, and this resistance is depen-
dent on the FhuR regulator, which functions as a repressor in the
absence of fusaric acid but as an activator in its presence (583).
ABC-type MacABC causes intrinsic resistance to aminoglyco-
sides, macrolides, and polymyxins, as its inactivation resulted in 2-
to 8-fold reduction of the MIC values of these agents (570, 584).
Another SmrA ABC pump conferred resistance to fluoroquinolo-
nes, tetracycline, doxorubicin, and dyes when expressed in E. coli
(585), and an antibody developed against this pump enhanced
antibiotic susceptibility in S. maltophilia (586). An MFS pump,
EmrCAB, is involved in the extrusion of hydrophobic toxic agents
but is not well expressed intrinsically (587).

ALPHAPROTEOBACTERIA: BRUCELLA, BARTONELLA, AND
RICKETTSIA

The alphaproteobacteria contain several species that are major
human and animal pathogens, such as Brucella, Bartonella, and
Rickettsia.
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Brucella spp.

Brucella spp. are facultative intracellular coccobacilli with six rec-
ognized species (Brucella abortus, B. canis, B. melitensis, B. neo-
tomae, B. ovis, and B. suis) that display distinct host-pathogen
associations. These species are of high clinical significance given
their role as causative agents of zoonotic brucellosis, which is re-
emerging, can be transmitted to humans, and is commonly asso-
ciated with laboratory-acquired infections (particularly with B.
melitensis) (588). Brucella spp. show similar genomes with two
circular chromosomes and contain a number of putative drug
efflux transporters (589, 590). These species contain trimeric
porins homologous to E. coli porins with comparable permeability
(591, 592).

Two RND systems, BepDE and BepFG, are involved in resis-
tance to antibiotics and other toxic agents (including doxycycline,
a major choice for the treatment of brucellosis) in collaboration
with the OM channel BepC (593, 594). Repressed by the BepR
regulator, the expression of BepDE was induced by deoxycholate.
Inactivation of BepFG produced an increased susceptibility to
toxic agents such as dyes but not to conventional antibiotics (594).
The inclusion of PA�N resulted in variable reductions in erythro-
mycin and moxifloxacin MIC values (595, 596), consistent with
the RND pump’s contribution to resistance. A putative BicA mac-
rolide pump is present in B. abortus and B. suis (590). Two MATE
pumps, NorMI and NorMII, were identified in B. melitensis, with
NorMI being confirmed to yield MDR when expressed in E. coli
(16). However, they were not involved in clinical isolates resistant
to fluoroquinolones and rifampin (597).

Bartonella spp.

Bartonella spp. exist in mammalian host reservoirs and are linked
to several human infections, such as cat scratch disease. While
Bartonella species are susceptible to most conventional antibiotic
classes, the major resistance mechanism characterized to date is
related to target modifications for resistance to fluoroquinolo-
nes, macrolides, and rifamycins (598). A VceA MDR pump was
identified in Bartonella australis (GenBank accession number
YP_007461659). OM porins and efflux components, including a
TolC homolog as well as RND systems, were identified (599–601);
nevertheless, none of the efflux pumps have been characterized for
their role in resistance.

Rickettsia spp.

Rickettsia spp. are obligately intracellular bacteria, including those
causing spotted fevers. Rickettsia spp. are often resistant to �-lac-
tams, aminoglycoside, and sulfonamide-trimethoprim but show
variable susceptibilities to macrolides (602). Genome comparison
of Rickettsia species shows the presence of a number of drug efflux
pump genes, such as 6 genes encoding RND pumps and 20 genes
encoding ABC transporters in Rickettsia conorii as well as an SMR
pump in Rickettsia bellii (602, 603).

BETAPROTEOBACTERIA: ACHROMOBACTER, BURKHOLDERIA,
AND NEISSERIA

Often found in natural environmental samples, the betaproteo-
bacteria Achromobacter, Burkholderia, and Neisseria consist of
many species (aerobic or facultative) that interact intimately with
plants or animals. Nonpathogenic betaproteobacteria were also
found to contribute to the evolution of class 1 integrons and re-
sistance in the pathogens of other species (604).

Achromobacter spp.

The nonfermentative Achromobacter bacilli include an emerging
opportunistic pathogen in cystic fibrosis patients, Achromobacter
xylosoxidans, whose genome contains a range of resistance genes
encoding drug-modifying enzymes and efflux pumps (605). The
latter include 4 RND systems, additional tripartite efflux systems,
and an ABC-type macrolide-specific MacAB transporter (605).
Two RND pumps, AxyABM and AxyXY-OprZ, were identified to
mediate MDR (606). Inactivation of AxyB produced up to a 20-
fold reduction of the MIC values of several third-generation ceph-
alosporins, with no changes in susceptibility to the aminoglyco-
sides amikacin and tobramycin (606). However, the disruption of
AxyY rendered a wild-type strain highly susceptible to aminogly-
cosides (16- to 128-fold MIC decreases for amikacin, gentamicin,
netilmicin, and tobramycin), doripenem, erythromycin, and tet-
racycline (all with 4-fold MIC reductions). In an aminoglycoside-
resistant mutant, AxyY inactivation restored its aminoglycoside
susceptibility (20- to 192-fold MIC changes), thus revealing that
AxyXY pumps out antibiotics often used for treatment of pulmo-
nary infection of cystic fibrosis patients (607).

Burkholderia spp.

The genus Burkholderia contains �40 species that are present in a
variety of ecological niches, including soil, water, plants, and ani-
mals. MDR is an emerging feature of many isolates such as those of
Burkholderia cepacia. A comparison of the OM proteomes of
Burkholderia mallei and Burkholderia pseudomallei suggests many
similarities, which include a number of porins and efflux pumps
(608). The major trimeric porin (Omp38) is a distant relative of E.
coli OmpF, but its permeability is likely lower, by 1 or 2 orders of
magnitude, than that of OmpF (609). However, another study
showed that the single-channel conductance of Omp38 was sim-
ilar to that of OmpF (610). The genomes of Burkholderia contain
multiple replicons such as those in the B. cenocepacia genome that
has three chromosomes in each strain with RND pumps encoded
in all chromosomes (611). A recent study assessed all 8 RND fam-
ilies with 471 putative RND sequences in 26 completely sequenced
Burkholderia genomes (including the virulent, epidemic cystic fi-
brosis strain J2315) (612). The drug-related HAE-1 RND pumps
in the Burkholderia genus vary very much in number, ranging
from only 4 in 3 strains of B. mallei to 15 in Burkholderia sp. strain
CCGE1002 and 11 to 16 in B. cenocepacia (611–613).

The first RND pump characterized in Burkholderia, CeoAB-
OpcM of B. cenocepacia (i.e., RND-10 of the 14 RND systems)
(611), mediates resistance to multiple antibiotics, including tige-
cycline, and is inducible by salicylate, iron starvation, and chlor-
amphenicol (16). While ceoB expression appears weak, the expres-
sion of 4 RND pump genes (rnd-3, -9, -11, and -13) is readily
detectable. Expression of the rnd-2 gene is also inducible by chlor-
amphenicol (611). RNDs 6 and 7 are twin pumps encoded by the
same operon, similar to MdtBC of E. coli (127, 611). Inactivation
of the rnd-4 gene led to a 4- to 8-fold increase in susceptibility to
aztreonam, ciprofloxacin, levofloxacin, gentamicin, tobramycin,
and chloramphenicol (614, 615). With 16 RND pumps present in
B. cenocepacia strain J2315, their differential roles in drug resis-
tance of planktonic and biofilm cells were investigated (613). An-
other study showed the high prevalence of RND pump-overpro-
ducing clinical isolates (particularly RND-3 overproducers)
(616). However, the data regarding the effect of PA�N on antibi-
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otic susceptibility appeared contradictory. While PA�N at 40
�g/ml did not alter the antibiotic susceptibility of several strains,
as also noted with erythromycin in B. pseudomallei (614, 617), a
newer study showed that PA�N at 64 �g/ml increased the suscep-
tibility to tigecycline (mostly 32- to 64-fold) in the B. cepacia com-
plex (618). The MICs of PA�N against several strains are 30 to 640
�g/ml (614), suggesting various susceptibilities of the individual
strains to PA�N. The RND system encoded by the operon con-
taining the BCAM0925 to BCAM0927 genes is upregulated by
chlorpromazine and mediates resistance to azithromycin and
chlorhexidine (619).

In B. pseudomallei, containing a dozen RND systems, the wide-
spread expression of 7 RND pumps in clinical strains was evident
(612, 620). Three pumps, AmrAB-OprA, BpeAB-OprB, and
BpeEF-OprC, were characterized (617, 621–623). While both
AmrAB-OprA and BpeAB-OprB mediate intrinsic resistance to
aminoglycosides and macrolides (617, 621), expression of these
pumps is commonly seen in clinical isolates (620). BpeEF-OprC is
responsible for the widespread trimethoprim resistance in both
clinical and environmental isolates (624). Interestingly, aminogly-
coside- and macrolide-hypersusceptible strains (with gentamicin
and azithromycin MICs of ca. 0.5 to 2 �g/ml) were isolated from
both clinical and environmental samples and contained a point
mutation in amrB that inactivated AmrAB-OprA. The reversion
of this mutation via in vitro exposure of the susceptible strains to
gentamicin and kanamycin (40 and 30 �g/ml, respectively) was
able to restore aminoglycoside and macrolide resistance (625),
highlighting the clinical concerns on current gentamicin use (e.g.,
4 �g/ml) in medium to isolate B. pseudomallei (626). In B. thai-
landensis, multidrug-resistant mutants selected by doxycycline
overproduced AmrAB-OprA and BpeEF-OprC. When either of
these pumps was inactivated, a third pump, BpeAB-OprB, was
hyperexpressed, indicating the interplay among the three RND
pumps (627), similar to those observed in P. aeruginosa (628) and
Salmonella (629). Interestingly, an antagonistic effect between
PA�N (at 50 and 200 �g/ml) and aminoglycosides/�-lactams was
observed, and the speculation was that PA�N might have induced
the overproduction of the AmrAB-OprA and BpeAB-OprB
pumps (627). It remains to be determined whether an induction
process exists for explaining the above-mentioned observations
that PA�N at 40 �g/ml did not alter antibiotic susceptibility in B.
pseudomallei (614, 617) and that PA�N at 20 �g/ml did not affect
the efflux activity of SmeDEF toward ciprofloxacin and tetracy-
cline in S. maltophilia (630).

Neisseria spp.

Neisseria spp. are commensal bacteria in many animals, with two
significant human pathogens, Neisseria gonorrhoeae and Neisseria
meningitidis, which have shown resistance emergence (for a recent
review, see reference 631). These species possess trimeric porins
that display high permeability with anion selectivity (632), and
they may render the species more susceptible to anionic penicil-
lins. Low-level MDR is mediated by mutations in genes encoding
porins or efflux pumps (15, 633). In fact, simultaneous porin mu-
tation and RND pump overproduction are needed for gonococcal
penicillin or ceftriaxone resistance, again supporting the signifi-
cance of the synergistic interplay between the OM and efflux
pumps (634–636). Mutations in the “multiple transferable resis-
tance” gene (mtrR) had long been associated with MDR in N.
gonorrhoeae, with an assumed alteration in OM permeability (15),

but the gene was then found to control the expression of MtrCDE,
the most characterized RND pump in Neisseria that contributes to
resistance to antibiotics (including �-lactams, macrolides, and ri-
fampin), detergents, bile salts, gonadal steroidal hormones, as well
as host cationic peptides (15, 633, 635–639). Either the deletion or
overexpression of MtrCDE produces a 4-fold rifampin MIC
change (639). MtrCDE deficiency renders gonococci more sus-
ceptible to progesterone (640).

Overexpression of MtrCDE due to mtrR or other regulatory
mutations (see Regulation of Multidrug Efflux Pumps, below) has
widely been observed in multidrug-resistant clinical isolates (16,
641). This includes interpatient transmission of high-level ceftri-
axone-resistant/multidrug-resistant N. gonorrhoeae with MtrCDE
overproduction (636). A new study also showed the global gene
transcriptional changes as a consequence of MtrCDE overproduc-
tion, and these changes included an upregulation of the gene en-
coding cytochrome c peroxidase that is associated with tolerance
to peroxides (642). The newly available crystal structures of MtrD
and MtrE (643, 644) also suggest that the transport mechanisms of
AcrAB-TolC discussed above (see Biochemistry and Genetics of
Multidrug Efflux Pumps) are applicable to the MtrCDE pump.
Another RND pump, FarAB-MtrE, of both N. gonorrhoeae and N.
meningitidis mediates resistance to antibacterial fatty acids and
cationic peptides that are likely present on mucosal surfaces of the
host (16, 645). Since many substrates of MtrCDE and FarAB-
MtrE are present in the host, these efflux pumps are also involved
in bacterial pathogenesis such that in vivo fitness or survival is
enhanced by these pumps (640, 641). The fatty acids and bile salts
in the gut may likely facilitate Mtr-mediated resistance, as ob-
served for isolates from rectal infections often possessing the MDR
phenotype (646). Also, MATE and ABC pumps were also identi-
fied with additional tetracycline-specific exporters (16). The clin-
ical importance of three MDR pumps (i.e., MtrCDE, MacAB, and
NorM) was recently demonstrated by their impact on extensive or
multiple drug resistance of clinical isolates in comparison with
clinical susceptibility breakpoints (647). For example, in an exten-
sively resistant isolate, the inactivation of MtrCDE changed the
susceptibility status for azithromycin, penicillin, and tetracycline
from R to S or I. MacAB inactivation alone also rendered the
resistant isolate S, providing an important clinical example of the
role of ABC transporters in bacterial drug resistance. The NorM
deficiency was also able to make an R-to-I status change for
tetracycline (8-fold MIC decrease) and to yield a �32-fold MIC
reduction for solithromycin, a fluoroketolide for which the
susceptibility breakpoints are as yet unavailable (647). Lastly,
the gene encoding an MFS transporter, the Mef macrolide
pump, on conjugative plasmids is present mainly in Gram-
positive bacteria (15) but was also found in N. gonorrhoeae and
Acinetobacter junii. These plasmids were readily transferred in
vitro to several Gram-positive and Gram-negative bacteria, in-
cluding Neisseria (648).

EPSILONPROTEOBACTERIA: CAMPYLOBACTER AND
HELICOBACTER

Many of the epsilonproteobacterial species are host associated,
such as Campylobacter and Helicobacter, and inhabit a wide variety
of ecological niches ranging from gastrointestinal tracts of animals
to water/marine reservoirs (649).
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Campylobacter spp.

The Campylobacter group contains the two very important human
enteropathogens Campylobacter jejuni and Campylobacter coli,
which are among the top pathogens responsible for foodborne
illnesses worldwide. There is an increasing emergence of resis-
tance to clinically relevant antibiotics such as fluoroquinolones
and macrolides, where drug efflux makes a major contribution
(16).

Campylobacters possess a major porin, major outer membrane
protein (MOMP), which appears to exist in a monomeric form as
well as in a weakly associated trimeric form (650, 651) and likely
yields OM permeability channels smaller than those of E. coli
porins (652, 653). The marked susceptibility of wild-type campy-
lobacter strains to large, hydrophobic antibiotics such as macro-
lides may suggest the presence of an unusually permeable bilayer
domain in the OM.

The genome of C. jejuni indicates the presence of a large num-
ber of drug exporters (16). The CmeABC system is the most char-
acterized RND pump in campylobacters and is responsible for
both intrinsic and acquired MDR, including resistance to bile salts
(654, 655). It is distributed in diverse isolates of animals and hu-
mans that are resistant to macrolides, fluoroquinolones, and tet-
racyclines (16, 656–661). Inactivation of CmeABC reduces signif-
icantly the in vitro emergence of fluoroquinolone-resistant
mutants, while its overproduction facilitates such selection (659).
Although the contribution of another RND pump, CmeDEF, to
intrinsic resistance is likely masked by CmeABC, the two pumps
interplay synergistically in providing resistance (662). CmeABC
also interplays with 23S rRNA target alterations or ribosomal pro-
tein modifications in increasing macrolide resistance levels (658).
The contribution of CmeABC to MDR was further observed with
the synergistic interplay between anti-CmeA and anti-CmeB pep-
tide nucleic acids to sensitize C. jejuni to multiple antimicrobials,
thus also suggesting a potential novel approach to combat efflux-
mediated MDR by using the pump-component-specific antisense
peptide nucleic acids (663). The combinational use of anti-CmeA
and anti-CmeB peptide nucleic acids, each at 1 to 4 �M, decreased
the MIC values of ciprofloxacin and erythromycin against a wild-
type strain 4- to �32-fold, while their separate use alone yielded
merely a 2-fold MIC reduction. Although these peptide nucleic
acids were effective in reducing the MIC of ciprofloxacin against a
gyrA mutant 16-fold, they were able to produce only a 4-fold re-
duction of the erythromycin MIC for a high-level erythromycin-
resistant mutant with a 23S rRNA mutation. An optimization
study of these antisense peptide nucleic acids showed the impor-
tance of the ribosome-binding sites as the target (664). However,
the entry of antibacterial peptides, including peptide nucleic acids,
may require importers such as the SbmA/BacA IM proteins that
were identified in several Gram-negative bacteria but remain un-
known in campylobacters (665).

Tolerance of campylobacters to trisodium phosphate, a highly
alkaline agent used to reduce pathogen prevalence on meat, is
mediated by the NhaA1/NhaA2 cation/proton transporter and
can be hindered by PA�N. This phenomenon was proposed to be
attributable to the contribution of RND pumps (666). However,
the effect of PA�N on OM permeability could also provide an
alternative explanation, since the PA�N concentration used, 64
�g/ml, was quite high.

Campylobacters are widely distributed in food-producing ani-

mals, particularly in poultry. Thus, resistance in campylobacters
of poultry origin has drawn much attention. Macrolides and fluo-
roquinolones are the drugs of choice to treat human campylobac-
teriosis. The exposure of chickens to either a fluoroquinolone (en-
rofloxacin) in drinking water or a macrolide (tylosin) in animal
feed readily resulted in the isolation of CmeABC-overproducing
mutants with an MDR phenotype (656, 667). In vitro stepwise
exposures of C. jejuni to escalating levels of erythromycin or tylo-
sin have generated a variety of macrolide-resistant mutants (668).
The mutations in ribosome proteins L4 and L22 occurred early
during this selection (low resistance level, with an erythromycin
MIC of 8 to 16 �g/ml), followed by CmeABC overproduction
(intermediate level, with an erythromycin MIC of 32 to 256 �g/
ml), and finally accompanied by mutations in the 23S rRNA genes
(high level, with an erythromycin MIC of �256 �g/ml), highlight-
ing that efflux mechanisms likely facilitate the emergence of high-
level macrolide resistance, similar to that of high-level fluoroquin-
olone resistance (659). CmeABC overexpression was partially a
result of single-residue changes in the C terminus of the repressor
CmeR (668). It should be noted that the multiple-stepwise-selec-
tion approach could yield pleiotropic mutations, thus underesti-
mating the importance of the CmeABC-overproducing mutants
that also possessed �200 up- or downregulated genes (including
the upregulation of genes encoding an SMR pump [Cj1173] and
two MFS pumps [CmeG and Cj0035c]), and some of these
changes may affect physiology and metabolism (668). The latter
offers an explanation regarding the growth burdens and fitness
cost of macrolide-resistant campylobacters reported by the
groups of Zhang and Yuan (669–671).

Additional pumps that are independent of CmeABC and
CmeEFG also likely mediate MDR (16) but remain to be further
studied. Similar to the above-mentioned gene expression changes
in erythromycin-resistant mutants (668), the transcriptional re-
sponse of C. jejuni to an inhibitory concentration of erythromycin
(4 �g/ml; 16� MIC) involved more than a hundred up- or down-
regulated genes, including two upregulated putative drug efflux
operons (Cj0309c-Cj0310c and Cj1173-Cj1174), each encoding a
paired SMR transporter. Inactivation of these operons impaired
cell growth under conditions of high oxygen levels and coloniza-
tion in chickens but did not alter the drug susceptibility toward 14
agents tested (including erythromycin) (672). The only MFS drug
pump characterized in this species to date is CmeG, and its inac-
tivation renders C. jejuni more susceptible to erythromycin, cip-
rofloxacin, and H2O2 (673). Finally, a novel ABC transporter,
ArsP, was recently identified to mediate resistance to nitarsone
and roxarsone, the organic arsenic agents used in poultry produc-
tion (674).

Helicobacter spp.

Helicobacter species, including Helicobacter pylori, are associated
with several important human and animal illnesses. As a domi-
nant species of the human gastric microbiota, H. pylori causes a
persistent inflammatory response and is linked to the develop-
ment of ulcers and gastric cancers (675). While H. pylori infections
need to be treated with antibiotics (676), acquired resistance to
fluoroquinolones, macrolides, and metronidazole, agents used for
the treatment of H. pylori infections, has emerged and is associated
with antibiotic consumption (677, 678).

H. pylori displays intrinsic resistance to multiple antimicro-
bials, including glycopeptides, nalidixic acid, polymyxins, sul-
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fonamides, and trimethoprim (676), suggesting that limited ac-
cess to drug targets may constitute part of the mechanisms of
resistance. Despite its relatively small genome size (1.7 Mb), H.
pylori has genes encoding a large number of OM proteins (679),
with several porins, including one that forms a large nonspecific
channel (680). Nevertheless, the exquisite susceptibility of H. py-
lori to macrolides (MIC90 of �0.1 �g/ml [676]) suggests, as with
campylobacter, that many drugs may permeate the bilayer regions
of the OM. Of several RND systems (681), HefABC contributes to
MDR (682, 683), and HefDEF (CznBAC) is a metal exporter for
cadmium, nickel, and zinc resistance and gastric colonization
(684). Four TolC homologs (HefA, HefD, HefG, and HP1489)
were identified, and only HefA inactivation rendered the mutants
more susceptible to deoxycholate and novobiocin. The simulta-
neous disruption of HefA and HefD increased metronidazole sus-
ceptibility (685), and laboratory-selected resistant mutants over-
expressed HefA (686). The expression of HefA was increased
following exposure to metronidazole in clinical isolates (687). In
an interesting study, H. pylori cultured in the presence of choles-
terol became resistant to bile salts and their analogs, and this phe-
notype required the HefC pump (688). Intriguingly, hefC mis-
sense mutations were among the several gene mutations in in
vitro-selected isolates with high-level resistance to amoxicillin,
and the introduction of a mutated allele to the wild type in-
creased resistance (689). Through examining the whole-ge-
nome sequences of clarithromycin-resistant isolates, a new study
revealed the gene clusters of TolC homologs involved in clarithro-
mycin susceptibility profiles in individual isolates (690). Given the
extremely acidic environments where H. pylori colonizes, the ef-
fect of this environment on secondary transporters in in vivo an-
timicrobial resistance remains to be determined. In this regard,
there are a number of putative ABC transporters in H. pylori (679).
Inactivation of the ABC-type transporter MsbA rendered the
strain more susceptible to erythromycin and glutaraldehyde.
MsbA also interplays synergistically with the glutaraldehyde-resis-
tant protein Ost/Imp to enhance hydrophobic drug resistance and
LPS biogenesis (691). Various types of putative drug transporters
(e.g., 2 RND pumps, 1 MFS pump, 2 MATE pumps, 4 SMR
pumps, and 1 ABC pump) were also identified in Helicobacter
cinaedi, a pathogen increasingly known for infections in immuno-
compromised patients (692).

BACTEROIDACEAE AND PREVOTELLACEAE

The anaerobic families Bacteroidaceae and Prevotellaceae consti-
tute a dominant part of the mammalian gut microbiota and play
an important role in maintaining human health. However, they
may cause anaerobic infections (e.g., blood and intra-abdominal
infections such as those associated with Bacteroides fragilis) and
exhibit intrinsic resistance to a number of antimicrobials (for a
review, see reference 693). Increasing MDR in Bacteroides spp. has
been observed in recent years. The OM of B. fragilis contains
porins that produce a much lower rate of diffusion of hydrophilic
saccharides than those of E. coli porins (16), and this would make
an efflux process efficient. However, the OM was shown to allow
rapid passage of hydrophobic agents such as rifamycin and clin-
damycin, likely through its bilayer domain, which was shown to be
more lipophilic than that of the enteric bacteria (694). Consider-
ing the environments that Bacteroides inhabits, it is not surprising
to see large genome sizes (e.g., 5.2 Mb with B. fragilis and 6.3 Mb
with Bacteroides thetaiotaomicron) (695, 696), which also include a

large number of drug efflux genes, e.g., those encoding 16 putative
RND pumps in B. fragilis (697) and 60 predicated drug efflux
components in B. thetaiotaomicron (696).

Many RND pump genes of B. fragilis were expressed under
laboratory conditions, and some were demonstrated to play a role
in intrinsic resistance (463, 697). Inactivation of BmeABC5
yielded a 4-fold reduction in the metronidazole MIC and also
increased susceptibility to cefoperazone and SDS (698). Intrinsic
resistance to fluoroquinolones is mediated by an MFS NorA
pump in B. fragilis and a MATE BexA exporter in B. thetaiotaomi-
cron (15). A macrolide resistance gene, msr(SA) (coding for an
ABC exporter), previously found in Gram-positive bacteria, was
also detected in B. fragilis (699). Thus, drug efflux is likely a major
contributor to resistance in Bacteroides. Indeed, one study con-
firmed a wide presence of resistance efflux genes in a number of
clinical isolates (700). Furthermore, a recent study of a multidrug-
resistant B. fragilis isolate led to the identification of a unique
conjugative transposon containing a hybrid mosaic of elements,
including genes for 3 efflux systems (MefA and ABC exporters of
Gram-positive bacteria and RND pump conserved in Bacteroides)
(701), again showing the emergence of complex resistance gene
assembly.

Prevotella spp. also constitute part of the oral and vaginal mi-
croflora and can also cause anaerobic infections. A recent study
from the United Kingdom (702) suggested the presence of multi-
ple RND pumps in 5 Prevotella spp. and their contribution to
tetracycline resistance in clinical isolates from patients with cystic
fibrosis and invasive infections. However, a relatively high PA�N
concentration (80 �g/ml) was used.

DRUG EFFLUX GENES ON PLASMIDS

Plasmids have played a critical role in both the emergence and
spread of resistance to most classes of antibiotics in bacteria (703–
705). Their mobile nature (often linked to transposons/integrons)
within or across bacterial species makes it extremely difficult to
contain resistance. Moreover, plasmid-mediated mechanisms of-
ten confer high-level resistance. Genes encoding various classes of
drug pumps have also been identified on numerous plasmids. The
typical examples are the well-known single-drug-class efflux
genes, such as various tet efflux genes usually found on plasmids
and encoding MFS pumps (8, 15, 133). The floR gene, found first
in an R plasmid in the florfenicol-resistant fish pathogen Pasteu-
rella piscicida and then in Salmonella and E. coli, also codes for a
singlet MFS pump responsible for amphenicol resistance (15).
Another efflux gene, mef(B), coexists with the aadA and sul3 re-
sistance genes in plasmids of porcine E. coli isolates and mediates
macrolide resistance (706). The plasmid-borne qepA and qepA2
genes encode MFS pumps providing resistance specific to fluoro-
quinolones (206, 707). These drug-specific exporter genes are lim-
ited to encoding the singlet MFS pumps.

In contrast to many MFS pumps, RND family efflux genes
generally require the contribution of three gene products in order
to produce effective efflux. Most Gram-negative bacteria contain
at least one set in their chromosome and in many cases contain
several sets of genes for such systems. Hence, the RND-type trans-
porter genes appear to be infrequently present on plasmids. How-
ever, the fact that several RND pump-encoding plasmids have
been reported to date (Table 4) forces us to consider that such
plasmids may exist more widely than previously suspected. Inter-
estingly, most of these plasmids were already isolated decades ago
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and derived from environments with possibly strong antimicro-
bial selection pressures (Table 4). Of these plasmids, the oqxAB
genes that code for such a pump and a periplasmic adaptor protein
were found in a plasmid in an E. coli strain resistant to olaquindox
(708), a quinoxaline-di-N-oxide agent once widely used in pigs in
Europe. The OqxB transporter shows only 40% identity with AcrB
but is more closely related to MexF of P. aeruginosa. Dependent on
the host TolC protein, OqxAB has a wide substrate specificity,
making E. coli also more resistant to fluoroquinolones, nalidixic
acid, chloramphenicol, trimethoprim, benzalkonium chloride,
and SDS (709). The oqxAB genes have since increasingly been
found on R plasmids from E. coli (710–714) and several other
species of Enterobacteriaceae, such as Salmonella and K. pneu-
moniae (235, 236, 303, 715). The coexistence of the oqxAB and floR
or CTX-M gene on the same plasmids was also observed (713,
715). Chromosomal oqxAB was found in clinical isolates of K.
pneumoniae and considered a possible source of plasmid-borne
oqxAB (302).

A silver resistance megaplasmid, pMG101, the earliest isolated
plasmid containing genes for an RND transporter, was obtained
from multidrug-resistant Salmonella in a hospital burn ward
where silver sulfadiazine was widely used in the 1970s (Table 4)
(716, 717). (Chromosomally encoded efflux and porin loss have
also been reported for E. coli [718].) Another tripartite exporter
(AcrA-ABC pump-OprM) was encoded by a large plasmid
(pRSB101) isolated from a sewage treatment plant (719). In a
study of mixed plasmid DNAs from a similar wastewater treat-
ment plant (720), homologs of E. coli acrB and acrD as well as
those of P. aeruginosa mexB, mexD, and mexY were found. If these
genes are truly derived from plasmids, this result may show us that
putting RND pumps on plasmids is not so difficult and may serve
as a cautionary note for the future development of MDR in Gram-
negative bacteria. Indeed, this worrisome speculation is supported
by a recent study that showed the inclusion of the complete P.
aeruginosa mexEF-oprN-like genes (ca. 23%, 35%, and 17% iden-
tities with MexE, MexF, and OprN, respectively, at the protein
level [X.-Z. Li, unpublished data]) into two conjugative broad-
host-range plasmids from a marine microbial biofilm (721). Ini-
tially isolated as mercury resistance plasmids from marine samples
collected in 1993 (722) and maintained in Pseudomonas putida,
these two plasmids from an unknown host are largely identical
and evolved through homologous recombination, and each plas-
mid contains transposons and various gene clusters (trb for mat-
ing pair function, tra for conjugative gene transfer, mer for mer-
cury resistance, and mexEF-oprN-like genes for the RND pump)
(Table 4) (721, 723). When tested for susceptibility to chloram-
phenicol, nalidixic acid, and trimethoprim, an E. coli isolate
carrying one of these two plasmids did not show altered drug
susceptibility. However, a Pseudomonas host with a deficiency in
endogenous RND pumps and a greater variety of agents could
have been used for defining the function of the plasmid-borne
RND pump. Lastly, a plasmid from an extremely drug-resistant C.
freundii isolate from a patient returning from India (724) contains
genes encoding the carbapenemase NDM-1, the ArmA 16S RNA
transferase, and an RND system (homologous to AcrR-MexAB-
CusC) (243). The RND gene region belongs to part of the CP4-like
prophage sequence, and whether this RND pump is functional in
providing MDR remains unknown. Nevertheless, these RND
pump-encoding plasmids (Table 4) have no doubt provided evi-

dence for sophisticated resistance evolution with possible adverse
clinical implications.

REGULATION OF MUTLIDRUG EFFLUX PUMPS

The regulation of drug efflux pump expression involves a variety
of complex pathways that typically require the participation of
numerous local and global transcriptional regulators or modula-
tors as well as the two-component regulatory systems. Mutational
changes of these regulators can lead to altered expression levels of
the pumps. Certain pumps are also inducible by various com-
pounds, including antibiotics. The versatile nature of pump reg-
ulation is consistent with the widespread presence of numerous
differentially expressed drug pumps and their role in resistance
and other physiological functions in order to adapt to diverse
environments. Below are examples that demonstrate the multi-
level regulation of drug exporters. An early review on the regula-
tion of drug transporters was available (725), but since then, ma-
jor advances have been made.

E. coli Efflux Pumps

AcrAB-TolC. AcrAB is constitutively expressed at a significant
level in E. coli, and a similar situation seems to prevail for AcrAB
homologs in other organisms. Although the acrAB and tolC genes
are not genetically clustered, their expressions are often regulated
by common regulators at multiple levels (Fig. 4). First, the local
repressor AcrR, encoded by the acrR gene that is divergently tran-
scribed from acrAB, represses directly both acrAB expression and
its own expression (726). A member of the TetR repressor family
(727), AcrR functions as a dimeric two-domain molecule, and
each monomer contains a smaller N-terminal domain and a larger
C-terminal domain. The latter constitutes the ligand-binding do-
main with a multientrance pocket to accommodate a number of
ligands or inducers (e.g., rhodamine 6G), followed by the confor-
mational change of AcrR that cooperatively affects the N-terminal
DNA-binding domain (728–730). However, AcrR does not tightly
inhibit AcrAB expression, and this allows the constitutive produc-
tion of AcrAB, conferring intrinsic MDR. Second, other regula-
tors, the AcrS repressor of the AcrEF pump (731), the histone-like
nucleoid structuring protein (H-NS) (732), and the quorum-
sensing receptor SdiA (733, 734), also participate in the regulation
of acrAB. SdiA likely acts as a minor activator since its genetic
deletion results in a small (2- to 3-fold) decrease in the MICs of
fluoroquinolones (733). Third, as described below, three global
regulators, MarA, SoxS, and Rob, play major roles by positively
controlling the expression of acrAB, tolC, and micF. The micF
transcript inhibits the translation of OmpF porin mRNA.

The multiple antibiotic resistance (mar) locus is a hot spot for
mutation (735) and includes two divergent transcriptional units,
marRAB and marC, which are transcribed from a common oper-
ator/promoter region (marO) (201). (However, marC, with
unknown function, is not involved in resistance [736].) The pro-
totypical member of the MarR family regulators, the MarR repres-
sor, is a dimer, with each monomer containing a winged-helix
DNA-binding motif. It negatively regulates the expression of mar-
RAB and is critical in determining the expression of the MarA
activator (737). MarA is an AraC family transcriptional activator
(738) and possesses two similar helix-turn-helix DNA-binding
subdomains (739). MarA not only positively controls the expres-
sion of marRAB (by binding to marO in a region that differs from
where MarR binds) (201) but also is involved in the regulation of
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�60 genes (740). Promoter discrimination of MarA regulon pro-
moters is mediated by Glu89 of MarA (741). AcrZ, a recently
identified small accessory protein of AcrB (112, 123), is also pos-
itively regulated transcriptionally by MarA, SoxS, and Rob (112).
The level of MarA (and SoxS) is also controlled by proteolytic
degradation by the Lon protease (742). The function of MarB
remained unknown until 2011 with a phenotypic examination of
the E. coli mutant library (Table 1) (30), which revealed that MarB
is a fine-tuning player inhibiting MarA and that this inhibition
likely occurs via a posttranscriptional process. Two additional
global activators, SoxS (the effector of the oxidative stress soxRS
regulon) and Rob (743), also belong to the AraC family and can
bind to marO and stimulate the gene expressions of the mar regu-
lon, including acrAB and tolC (201). Because MarA and SoxS are
very small proteins, they work solely by changing the level of their
expression. Their upregulation may occur through the mutational
inactivation of their cognate repressors MarR and SoxR, respec-
tively; in clinical isolates showing high levels of fluoroquinolone
resistance, mutations inactivating MarR are common (198). In
other studies often involving other species of Enterobacteriaceae,
fluoroquinolone-resistant mutants also had mutations in soxRS or
acrR, as described above in the section dealing with Enterobacteri-
aceae. Alternatively, these repressors may become inactive
through interactions with small molecules, e.g., salicylate, 2,4-di-
nitrophenol, or plumbagin (15, 744) binding to MarR, or oxida-
tive inactivation of FeS-containing SoxR by superoxide (745). In
contrast, Rob is much larger, and the binding of ligands such as
dipyridyl (15) or fatty acids and bile salts (746) increases its bind-

ing affinity for the promoter region of acrAB, resulting in the
upregulation of AcrB. Also, unlike with MarA, only one of Rob’s
two helix-turn-helix DNA motifs engages the binding site (747).

A two-component system, EvgAS, is also involved in the tran-
scriptional regulation of not only acrAB and tolC but also emrKY,
mdtEF, and mdfA (748, 749). Still, tolC expression is dependent on
both EvgAS and another two-component system, PhoPQ. These
systems constitute a signal transduction cascade and are con-
nected via a small IM protein named B1500 (65 amino acids),
whose expression is directly regulated by EvgSA (750). The com-
mon regulation of acrAB-tolC by many regulators is further eluci-
dated by the transcriptional activation of two tolC promoters us-
ing one binding site (mar box) by MarA, SoxS, and Rob, whereas
a different promoter of tolC is activated by EvgAS and PhoPQ
(751). Interestingly, a small RNA, RyeB, expressed during the sta-
tionary phase, can inhibit TolC expression (752). This type of
regulation occurs at the posttranscriptional level through binding
of the small RNA to the 5= untranslated region of mRNA targets,
and it requires a small chaperone protein, Hfq. An Hfq mutant is
susceptible to several antibiotics and other toxic agents, and this
phenotype is dependent on a functional AcrAB, suggesting the
involvement of Hfq in AcrAB production (753). Hfq mutants
have reduced abilities in fitness, virulence, and biofilm formation,
likely due to the effect of Hfq on the regulation of the stationary-
phase sigma factor RpoS and the envelope stress response sigma
factor RpoE (754). However, the clinical significance of small
RNA regulation of MDR efflux systems requires further investiga-
tion.

FIG 4 Regulation of expression of the AcrAB-TolC efflux system of E. coli. Transcription of the acrAB and tolC genes is not genetically clustered but is often
regulated by common regulators at multiple levels. The local repressor AcrR represses acrAB expression directly. Other regulators include the AcrS repressor of
the AcrEF system, histone-like nucleoid structuring protein (H-NS), and the SdiA global regulator. Three global regulators, MarA, SoxS, and Rob, positively
control the expression of acrAB, tolC, and micF. The micF transcript inhibits the translation of OmpF porin mRNA. The two-component regulatory systems
EvgAS and/or PhoQP can enhance acrAB and tolC expression. The red lines show the repression of the transcription of the relevant gene by the repressors AcrR,
AcrS, H-NS, MarR, and SoxR. The green arrowed lines reveal the activation of relevant gene expression by the activators MarA, SoxS, SdiA, Rob, EvgS, and PhoP
(SoxS and Rob can also stimulate MarA expression). MarB modulates MarA expression. Several regulators can bind with certain ligands (such as antimicrobial
agents and metabolites) or be induced by oxidative stress and thus become inactivated (in the case of AcrR, MarR, and SoxR) or activated (in the case of Rob when
binding with bile salts or fatty acids). Mutational changes can lead to the inactivation of AcrR, AcrS, MarR, and SoxR. The crystal structures of AcrR, MarA, MarR,
SoxR, and Rob are available with identified ligand-binding domains and conformational changes for regulation. Regulation of AcrAB by noncoding RNAs has
also been identified (see the text). Overall, under various conditions, these multiple regulation mechanisms can together produce MDR by allowing simultane-
ously decreased influx (via OmpF porin) and increased efflux (via AcrAB-TolC) of antimicrobial agents, which can be captured by the pump complex from the
outer and/or inner leaflets of the IM and the periplasm (but not directly from the cytosol). Expression of acrZ (whose product can be copurified with AcrB) is
coregulated with that of acrAB via MarA, SoxS, and Rob.
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Overall, under diverse conditions, these multiple regulatory
mechanisms can together produce MDR by allowing simultane-
ously decreased influx (via decreased OmpF porin) and increased
efflux (via AcrAB-TolC) of various agents (Fig. 4). Indeed, one in
vitro-selected high-level ceftazidime-resistant mutant (128-fold
MIC increase) had OmpF loss and increased expression levels of
acrB, acrD, and acrF with multiple mutations in acrR, marR, and
the gene for penicillin-binding protein 3 and overexpressed sdiA,
while another mutant with low-level ceftazidime resistance (4-
fold MIC increase) showed only increased acrB expression levels
due to an acrR mutation (755).

Regulation of other pumps. The MdtABC and MdtEF RND
pumps are regulated by the two-component systems BaeSR and
EvgSA, respectively (128, 756). Expressed from the genes down-
stream of mdtABCD, BaeSR not only activates the expression of
mdtABCD (128) but also controls the expression of �60 genes
(including acrD) that are part of the BaeSR regulon and involved
in signal transduction, the chemotactic response, flagellum bio-
synthesis, metal homeostasis, and sugar or drug transport (757),
providing a major pathway related to the bacterial cell envelope
response (758). (BaeSR is in fact required for envelope stress-
induced CRISPR [clustered regularly interspaced short palin-
dromic repeat] RNA-mediated DNA silencing that constitutes
part of a defense mechanism in E. coli [759].) MdtBC production
is increased strongly with subinhibitory concentrations of cipro-
floxacin (760), but clinically relevant conditions for its overex-
pression are not obvious. Functioning through the BaeSR and
CpxAR pathways, indole induces the expression of MdtABC and
AcrD (756). Tannins, secondary metabolites of plants, can also
induce the expression of MdtABC via BaeSR (761). Of the BaeSR
regulon, there is a spy gene encoding a periplasmic chaperone
(Spy), which shows increased levels in TolC or pump mutants and
requires BaeSR and CpxAR systems for full activation (762). The
expression of MdtEF is positively regulated by two AraC family
activators, YdeO and GadX (763–765), and is also stimulated by
N-acetyl-D-glucosamine through catabolite activation (763) and
overexpression of a small (85-nucleotide) noncoding DsrA RNA
(766). The latter RNA functions as an antisilencer of the H-NS-
silenced genes (767). H-NS represses the expression of the efflux
operons mdtEF, acrEF, and emrKY (732). Under anaerobic condi-
tions, mdtEF expression involves regulation by the ArcBA system,
which antagonizes the effect of the H-NS (768). One study also
suggested that the expression of acrAB, emrAB, emrD, emrE,
emrKY, mdfA, and ydgFE is relatively stable during the various
phases of growth, but mdtEF has the highest expression level at the
late stationary phase, and this is mediated by RpoS (769).

Salmonella Efflux Pumps

Similar to the regulation of its E. coli homolog, the Salmonella
AcrAB-TolC system is controlled through several regulatory path-
ways, such as AcrR, MarA, and SoxS (16, 770–773). Paraquat can
induce AcrAB production, and this induction is dependent on
SoxS (774). A recent study also showed that the expression level of
the acrB, acrD, and/or acrF gene was increased when one or mul-
tiple acr genes were deleted (629), and this observation was
similar to the situation found among the Mex pump genes of P.
aeruginosa (628). However, the compensatory acr expression
level changes appeared to have only a minimal impact on the drug
susceptibility phenotype (except some aminoglycosides) (629).

Another gene locus of ramRA that is widespread in Enterobac-

teriaceae except E. coli also significantly influences the expression
of not only AcrAB but also AcrEF and MdtABC in Salmonella (16,
229, 773, 775, 776). ramRA are transcribed divergently, with
RamR repressing ramA expression (775–779). Induced by a vari-
ety of environmental signals, including bile salts, indole, and phe-
nothiazines, RamA serves as a small activator protein to contrib-
ute to increased AcrAB production (776, 780–782). Bile binds to
RamR (778) and in this way is thought to increase the expression
of AcrAB. Although an earlier study (780) claimed that cholate
and indole bound directly to RamA, the binding of an effector
ligand to such a small regulator (only 129 amino acids) is highly
unusual. Indole induces AcrAB production by also increasing
RamA expression (780). RamA expression can be also increased
by the inactivation of AcrAB and is regulated by the ATP-depen-
dent Lon protease (782, 783). (The ramA sequence was present,
but escaped notice, within the E. cloacae genomic fragment that
was found to downregulate E. coli OmpF in 1990 [784] and was
correctly identified in K. pneumoniae later [785].) The TetR-type
RamR repressor negatively controls the expression of ramA and
ramR itself by binding to the intergenic ramA-ramR promoter
region (778), and mutations in ramR lead to increased production
of RamA (777). RamR forms complexes with multiple agents (e.g.,
berberine, crystal violet, dequalinium, ethidium bromide, and
rhodamine 6G), and this interaction occurs in a common residue
of Phe115 and reduces the DNA-binding affinity of RamR (779).
A recent review also highlighted the role of RamRA in the regula-
tion of AcrAB (36). Additionally, the expression of the ABC-type
MacAB pump is negatively controlled by PhoPQ (222).

K. pneumoniae Efflux Pumps

Similar to that in E. coli and Salmonella, AcrAB expression in K.
pneumoniae, as shown in various clinical isolates or laboratory
mutants, involves both negative control by AcrR and positive con-
trol by RamA and SoxS (292, 299, 501, 786). RamA and SoxS
expressions are affected by RamR and SoxR regulators, respec-
tively (299, 787). RamA can also autoregulate its own expression
through binding to two ramA promoter sites (788). ramR is lo-
cated upstream of the romA and ramA genes and is transcribed
divergently (787), and RamR binds to two sites of the romA-ram
locus (788). Mutations in ramR can yield hyperproduction of
RamA and AcrAB-TolC (300, 787, 788).

Another AraC regulator, RarA, which is encoded by a gene up-
stream of the chromosomal oqxAB pump genes (chromosomal
oqxAB genes are found only in K. pneumoniae to date), also posi-
tively controls the expression of AcrAB and OqxAB. RarA is pres-
ent not only in K. pneumoniae but also in Enterobacter and Serratia
(789, 790), and it functions in a regulon that affects the expression
of 66 genes (791). The expression of OqxAB is additionally down-
regulated by a GntR-type regulator, OqxR, encoded by a gene
located downstream of oqxAB (790). A point mutation in oqxR
was linked to the hyperexpression of rarA and oqxB (792). Intrigu-
ingly, the genetic arrangement of rarA-oqxAB-oqxR is observed
both in chromosomes and on a plasmid (790). Nearly all tested
clinical tigecycline-nonsusceptible isolates (25 out of 26) from
China contained mutations in ramR and/or acrR, with about one-
third of the isolates carrying the simultaneous overexpression of
ramA-acrB and rarA-oqxB (301). The expression of eefABC ap-
pears to be induced by an acidic or hyperosmolar environment
but not by bile salts (793). The CpxAR system and the LysR-type
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OxyR regulator are also involved in the positive control of the
expression of the acrB, acrD, and/or eefB efflux gene (794, 795).

P. aeruginosa Efflux Pumps

MexAB-OprM. Despite rather stable expression under standard
laboratory conditions, the mexAB-oprM operon is subject to com-
plex and finely tuned regulation. Multiple gene products have
been identified to influence mexAB-oprM activity, and these in-
clude the regulators MexR, NalD, and ArmR (due to NalC altera-
tion) and a two-component system, RocS2-RocA2 (Fig. 5). MexR,
a MarR family repressor, is determined by a self-regulated gene
(mexR [also called nalB]) adjacent to mexAB-oprM on the chro-
mosome (403). The binding of MexR as a dimer to the intergenic
DNA region carrying the divergent overlapping promoters of
mexR and mexAB-oprM (PI) results in the balanced transcription
of both mexR and mexAB-oprM, which provides P. aeruginosa a
protective baseline level of wide-spectrum efflux activity (405,
796). Despite the presence of another more proximal promoter
(PII), PI drives most of the expression of the operon in wild-type
cells (796, 797). Interestingly, some in vitro data support the no-
tion that MexR dimerization through the formation of inter-
monomer disulfide bonds between redox-active cysteines pre-
vents MexR from interacting with its cognate DNA-binding sites
and from exerting its repressor activity (798, 799). This redox
modulation of MexR was proposed to occur in vivo when bacteria
are stressed by oxidative agents (cumene hydroperoxide) or anti-
biotics (meropenem and nalidixic acid) (798). However, this as-
sumption still needs to be substantiated, as H2O2 (800, 801) and
antibiotics such as colistin (802) and tobramycin (803, 804) ap-
parently do not induce mexAB-oprM transcription significantly in
planktonic and/or sessile cells.

The expression of mexAB-oprM can be modulated positively
although indirectly by ArmR, a 53-residue peptide encoded by the
second gene of a two-gene operon, PA3720-PA3719 (406). Iso-
thermal titration calorimetry studies demonstrated that ArmR
can sequester MexR via an allosteric polypeptide-protein interac-
tion of high affinity, thus alleviating the repressor activity of MexR
toward mexAB-oprM (805). Indeed, the conformation of MexR in
complex with ArmR is incompatible with DNA binding (806);
thus, ArmR may be considered an antirepressor. Unless mutations
disrupt the nalC (PA3721) gene, which encodes a TetR family
regulator (727) that strongly represses the adjacent PA3720-
PA3719 operon, baseline amounts of ArmR are not expected to
influence MexAB-OprM production in wild-type cells (406).
However, chemostat experiments with strain PAO1 showed that
various chlorinated phenols, including the environmental con-
taminant pentachlorophenol, can induce the expression of the
PA3720-PA3719 and mexAB-oprM operons through reversible,
noncovalent binding to the NalC protein (807, 808). Recent data,
however, showed that pentachlorophenol stimulates MexAB-
OprM production, surprisingly, in an ArmR-independent (al-
though MexR-dependent) manner (809). Possibly, the regulatory
pathway here involves in vivo-generated catabolite effectors mim-
icking more specific antimicrobial phenolic compounds than
pentachlorophenol that P. aeruginosa may encounter in its natural
environment (809). The physiological conditions under which
ArmR ultimately activates mexAB-oprM thus remain unclear and
require further studies.

The third known regulator of mexAB-oprM is NalD, another
TetR-type repressor encoded by the PA3574 gene, which binds to

a proximal promoter, PII, upstream of the efflux operon (408,
810). Its DNA binding abolishes PII activity in wild-type bacteria,
resulting in mexAB-oprM being expressed essentially from the dis-
tal promoter PI (810). In contrast to its homolog TtgR from P.
putida, which negatively controls the expression of the TtgABC
pump, no ligand that is able to relieve NalD from its operator site
has been reported so far (811). Whether NalD-dependent induced
expression of mexAB-oprM occurs when P. aeruginosa is chal-
lenged with some natural or semisynthetic antimicrobials remains
to be elucidated. Moreover, experimentally adding polyethylene
glycol to NalD in vitro during a structural study resulted in the
contraction of NalD intraprotein chains (812), yet its physiologi-
cal significance is unknown. Note that MexAB-OprM overpro-
duction with combinational mutations in mexR, nalC, and nalD
has been observed in clinical isolates, including epidemic strains
(380, 382, 413, 425).

In addition to MexR, ArmR, and NalD, somewhat more com-
plex regulatory circuits control MexAB-OprM expression. This is
not really surprising per se in view of the major protective function
of the transporter. Thus, mexAB-oprM expression has been re-
ported to be growth phase regulated and to reach a maximum level
at the onset of the stationary phase, independently of MexR and of
LasR, a transcriptional regulator controlling the production of the
quorum-sensing cell-to-cell signal N-3-oxo-dodecanoyl-L-ho-
moserine lactone (3-oxo-C12-HSL) (16, 797, 813). Despite its
structural relationship with 3-oxo-C12-HSL, the Rhl quorum-
sensing signal N-butanoyl-L-homoserine lactone (C4-HSL) is not
a substrate for MexAB-OprM (398, 399). The length of the acyl
side chain seems to be an important factor in the binding affinity
of acyl-HSL for MexB, with C8 to C14 compounds being better
substrates for the pump than C4 to C7 molecules (399, 400). While
3-oxo-C12-HSL does not significantly impact mexAB-oprM tran-
script levels when added exogenously to P. aeruginosa (400, 814),
C4-HSL can induce operon expression quite strongly. Conse-
quently, it was inferred that the C4-HSL molecule might play a role
in the growth-phase dependent regulation of MexAB-OprM
(814), with MexR not being required for this control (815). In this
regard, the local activator MexT of the MexEF-OprN system also
displays an inhibitory effect on MexAB-OprM expression in
MexEF-OprN-overexpressed nfxC mutants through as-yet-un-
characterized mechanisms (814). A macrolide (azithromycin) can
negatively affect MexAB-OprM expression through its impact on
the quorum-sensing system (16). However, the interplay between
the pump and quorum sensing in P. aeruginosa is far from clear if
one considers that the deletion of the mexAB-oprM operon does
not result in increased production of elastase in strain PAO1
(398). This result is surprising since 3-oxo-C12-HSL, which signals
elastase production, would be expected to reach higher intracel-
lular levels if it is no longer effluxed out of the cells. Moreover, a
global transcriptional regulator of the LysR family, AmpR, which
also controls the expression of AmpC �-lactamase, is reported to
repress mexR expression and thus to increase the level of MexAB-
OprM production (816).

Another still open issue relates to the role that MexAB-OprM
potentially plays in the increased intrinsic resistance of P. aerugi-
nosa biofilms to antibiotics. In some experiments, the expression
levels of mexAB-oprM appeared to have no or a limited influence
on the resilience (log reduction of CFU) of in vitro-developed
biofilms exposed to ofloxacin, ciprofloxacin, or tetracycline (817).
Supporting the notion of a weak impact of the export system on
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biofilm resistance, mexAB-oprM expression was even found to be
repressed by RocA2, a response regulator activated by two distinct
sensor kinases (RocS1 and RocS2) that are themselves known to
positively control the pilus assembly machinery cluster cupC in-
volved in adherence/microcolony formation (814, 818). Interest-
ingly, BrlR, a biofilm-specific MerR-type regulator, was required
to sustain mexAB-oprM expression during an early stage of bio-
film development through its binding to the promoter region of
the operon (819). Compared to wild-type PAO1 biofilms,
PAO1�brlR biofilms were susceptible (as evaluated by the log re-
duction in the number of viable cells after drug exposure) to nor-
floxacin, tetracycline, trimethoprim, and aminoglycosides, and
they also expressed 4-fold-lower levels of the MexA protein (819,
820), supporting that MexAB-OprM indeed has a role in biofilm
antibiotic resistance. (Still, plasmid-borne brlR overexpression
produces 4- to 6-fold MIC increases for chloramphenicol, nor-
floxacin, tetracycline, tobramycin, and trimethoprim in plank-
tonic cells [820]. This is attributed to the regulatory activation of
mexAB-oprM and mexEF-oprN by BrlR’s binding to the promoter
regions of these efflux operons [819].) Both BrlR production and
BrlR-DNA binding are stimulated by the secondary messenger
cyclic di-GMP (c-di-GMP) (821). Since MexAB-OprM does not
accommodate aminoglycosides unless bacteria are cultured in
low-ionic-strength medium (164), the reported hypersusceptibil-
ity of PAO1�brlR biofilms to tobramycin and kanamycin might
be interpreted as the result of OprM being in limiting amounts to
form a functional MexXY/OprM system able to extrude these
molecules (434). Levels of c-di-GMP are increased by the histidine
kinase SagS, a two-component hybrid that is expressed from the
early developmental stage of biofilms and that also affects BrlR
production (822). Considering that SagS indirectly activates brlR
expression at the irreversible attachment step of biofilm develop-
ment (823), mexAB-oprM expression thus appears to be under the
control of at least two distinct and opposite signal-transducing
systems (i.e., SagS-BrlR and RocS1/RocS2-RocA2). An additional
level of complexity in the biofilm-associated regulation of mexAB-
oprM was highlighted by Pamp et al. (824). By using a pmexA-gfp
reporter fusion and a dead-cell fluorescence probe, those authors
noted an increased expression level of mexA in the metabolically
active parts of mature biofilms challenged with colistin. More
puzzling were their findings suggesting that MexAB-OprM might
contribute to the tolerance of flow chamber-grown biofilms to
colistin, as polymyxins (colistin and polymyxin B) do not appear
to be transported by the pump (440). Similar conclusions were
reached regarding the implication of two other RND pumps,
MexCD-OprJ and MuxABC-OpmB, in biofilm recalcitrance to
colistin (477). That MexAB-OprM might play a role in tolerance
to colistin independent of its drug export activity implies that the
pump has broader physiological functions than xenobiotic trans-
port.

MexXY. As with MexAB-OprM, the MexXY/OprM(OprA) sys-
tem is also subject to complex, multilevel regulation implying
both local and more general regulators (Fig. 5). The very low basal
expression level of mexXY(oprA) in wild-type bacteria results
from the direct binding of the dimerized, strong repressor MexZ
to a 20-bp palindromic sequence encompassing the overlapping
promoters of mexXY(oprA) and the adjacent, divergently tran-
scribed gene mexZ (458, 825, 826). Unlike other TetR-type regu-
lators (727), MexZ’s DNA binding is not relieved by antibiotics
through a direct ligand-regulator interaction but seemingly via

indirect protein-protein sequestration, a process relying on the
product of the PA5471 gene, named ArmZ, for the antirepressor
of mexZ (825–827). It was demonstrated that the induction of
mexXY expression in response to protein synthesis inhibitors is
totally dependent upon ArmZ and that the expression of armZ
itself is induced by ribosome-targeting agents through a sophisti-
cated mechanism of transcriptional attenuation involving a short
13-amino-acid leader peptide, PA5471.1 (828). When the bacteria
grow in drug-free medium, the transcribed PA5471.1 sequence is
predicted to form a stem-loop structure with adjacent regions of
the leader mRNA ahead of PA5471; downstream, another termi-
nator-like stem-loop is allowed to form, which attenuates tran-
scription of the PA5471-PA5470 operon by RNA polymerase
(828). Antibiotic interference with the ribosomal machinery and
translation of the PA5471.1 gene would thus prevent the forma-
tion of these secondary mRNA structures and result in increased
expression levels of PA5471 with subsequent mexXY(oprA) acti-
vation through ArmZ (828). Additionally, the rplU-rpmA operon
encodes the ribosomal proteins L21 and L27. Mutations in its
promoter region, as observed in pan-aminoglycoside-resistant
mutants, led to the reduced expression of this operon, which was
linked to ArmZ-dependent increased MexXY production. Thus,
the ribosome-perturbing mutations act in a way reminiscent of
mexXY induction mediated by ribosome-targeting antibiotics
(461). However, effectors other than ArmZ seem to be required
for full MexZ-dependent drug induction of the efflux operon, as
the latter still remains inducible in mexZ and mexZ-PA5471
knockout mutants (441, 827). Furthermore, it was demonstrated
that exposure of P. aeruginosa to reactive oxygen species such as
H2O2 also results in ArmZ-dependent mexXY(oprA) derepression
(454). The physiological implications of this induction remain
unclear, as the pump itself does not contribute to resistance to
reactive oxygen species. Lastly, activation of mexXY expression
also occurs through a newly described pathway where the AmgRS
two-component system regulates mexXY expression likely via its
positive effect on the expression of the htpX and PA5528 genes
(which encode an IM-associated protease and a modulator of the
FtsH protease, respectively) (829–831).

In addition to ArmZ-MexZ, which functionally links the acti-
vation of the pump to ribosome dysfunction, at least two signal
transduction regulatory systems interconnect MexXY/OprM
(OprA) with other cellular processes. Disruption of the PA2572
gene (which encodes a noncanonical response regulator) or the
PA2573 gene (the determinant of a probable methyl-accepting
chemotaxis protein) strongly increased mexXY(oprA) expression
(832). This led to increased resistance to aminoglycosides but,
intriguingly, not to ciprofloxacin, yet another pump substrate
(832). As demonstrated by gene inactivation, the putative histi-
dine kinase sensor (PA2571) of both regulators does not seem to
initiate the cascade that eventually controls pump expression, sug-
gesting that PA2572 and PA2573 respond to so-far-unknown sig-
nals, perhaps through other chemoreceptors. More is known
about the regulation of MexXY by the response regulator ParR
and the membrane sensor ParS. When activated by mutations or
bacterial exposure to subinhibitory concentrations of polyca-
tionic agents such as polymyxins (833), this two-component sys-
tem downregulates oprD expression with a concomitant upregu-
lation of the transcript levels of mexXY(oprA) and the LPS
modification operon arnBCADTEF-ugd (444). This coordinated
response results in an MDR phenotype due to the complementary
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FIG 5 Regulation of expression of RND multidrug efflux systems of P. aeruginosa. Of 12 RND pump operons identified in this organism, half of them (presented
in green, with the arrows showing their transcriptional directions) are regulated under a local regulator (mostly by a repressor [MexR, NfxB, EsrC, MexZ, or
MexL] or by an activator [MexT] encoded by a gene adjacent to the efflux operons) or a two-component system of CzcRS for the czcCBA operon. (RND pump
operons with no identified local regulatory genes are not included.) The red lines show the repression of the transcription of the relevant gene by repressors, while
the green arrows reveal positive regulation by the regulators. Local repressors are controlled by antirepressor proteins (ArmR and ArmZ) and can also bind to
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effects of drug efflux and reduced OM permeability (LPS modifi-
cation and OprD loss) (444, 452).

Other Mex pumps. Other Mex pumps, including MexCD-OprJ
and MexEF-OprN, are not typically expressed in wild-type strains.
Some of these pumps are regulated by local regulators (Fig. 5),
such as the NfxB and EsrC repressors of MexCD-OprJ (465, 834,
835), the MexT activator of MexEF-OprN (836), and the MexL
repressor of MexJK (837). With the MexCD-OprJ system, NfxB
functions as a multimer with C termini required for multimeriza-
tion and N termini implicated in DNA binding (834). EsrC is a
newly identified second regulator of MexCD-OprJ, and its encod-
ing gene (PA4596) is located downstream of mexCD-oprJ. EsrC
exerts its inhibitory impact on mexCD-oprJ expression only when
cells are under envelope stress and is dependent on NfxB (835).
nfxB mutations in wild-type or mutator strains or as a result of the
use of mutagens can occur over the entire nfxB gene (838). Ele-
vated frequencies of nfxB mutations are also evident with the in-
activation of the DNA oxidative repair system (839). Expression of
mexCD-oprJ can be induced by a number of biocides (e.g., chlo-
rhexidine and benzalkonium chloride), dyes (ethidium bromide),
and other membrane-damaging agents (detergents, solvents,
polymyxin B, and antimicrobial peptides) (466, 467). Indeed,
mexCD-oprJ shows the greatest transcriptomic response among
the genes after exposure of P. aeruginosa to chlorhexidine (840).
These membrane-damaging agents apparently act to disrupt the cell
membranes and result in the production of membrane lipid deriva-
tives that stimulate the membrane-associated Muc proteins and
eventually activate the stress response sigma factor AlgU for enhanc-
ing MexCD-OprJ production. nfxB mutation-related mexCD-
oprJ hyperexpression is also dependent on AlgU (467). However,
AlgU is negatively regulated by the global regulator AmpR (816,
818).

The expression of MexEF-OprN is controlled by several
regulators (Fig. 5). The LysR-type regulator MexT is involved in
controlling the expression of multiple genes in nfxC mutants, in-
cluding mexEF-oprN, oprD, and genes for virulence factors (836,
841–844). mexT variations have been observed in wild-type
strains and MexEF-OprN-hyperproducing nfxC mutants, which
possess inactive and active forms of MexT, respectively (845). One
gene of the MexT regulon, mexS (encoding an oxidoreductase of
unknown function [836]), is of particular importance, as its alter-
ation in nfxC mutants induces mexEF-oprN expression with con-
comitant development of MDR (846). MexT may interact with
MexS, whose mutations enhance MexT-dependent mexEF-oprN
expression through the intracellular accumulation of possibly
toxic metabolites recognized by MexT as coinducers (846). The
consequent production of MexEF-OprN would allow the extru-
sion of these noxious intermediates. Recent data support this
hypothesis, since the exposure of P. aeruginosa to nitrosative
stressors such as S-nitrosoglutathione activates mexEF-oprN tran-

scription through MexT (847). The possible MexT-MexS interac-
tion also affects the type III secretion system (848) and the re-
sponse to disulfide stress [elicited by diazenedicarboxylic acid
bis(N,N=-dimethylamide)] that perturbs the thiol-disulfide bal-
ance in the cytoplasm (849), thus further confirming the linked
regulation among the drug efflux pump, virulence factor produc-
tion, and the redox stress response. MexEF-OprN contributes to
intrinsic resistance to this disulfide stress elicitor only in the pres-
ence of MexT (849). However, the functional link between MexS
and MexEF-OprN might be more complex than anticipated, as
data suggest that overexpressed mexS would also lead to MexT-
dependent mexEF-oprN overexpression, at least in certain genetic
backgrounds (850). Moreover, mutations in the ParSR system,
which is involved in the regulation of MexXY, downregulate the
expression of both mexS and mexEF-oprN (387). Interestingly,
concomitant upregulation of MexS and MexEF-OprN was seen
when P. aeruginosa was exposed to airway epithelial cells releasing
unknown efflux-inducing signals (851). An H-NS family protein,
MvaT, is a global regulator affecting the expression of hundreds of
genes, including mexEF-oprN and others involved in biofilm for-
mation, quorum sensing, and virulence (16, 852–854). The inac-
tivation or mutation of mvaT is linked to MexEF-OprN hyperex-
pression and a reduction of the OprD level, and this impact on
MexEF-OprN is independent of mexT or mexS (855). An mvaT
mutant also shows decreased expression of the two-component
regulator gene (PA2570) located immediately downstream of the
czcABC efflux operon (853). Hyperproduction of MexEF-OprN
with mutations in mexT, mexS, and mvaT was confirmed in clin-
ical isolates (431). Genetic inactivation of AmpR yields an in-
creased production of MexEF-OprN with an MDR phenotype
(816), and preexposure of P. aeruginosa to subinhibitory concen-
trations of antibiotics (e.g., imipenem at a concentration as low as
3 ng/ml) induces AmpR production (856). The above-mentioned
regulator BrlR is also an activator for MexEF-OprN expression
(819).

The CzcCBA metal exporter is upregulated by at least 2 two-com-
ponent systems, CzcRS (CzrRS) (492) and CopRS (857). Subinhibi-
tory concentrations of zinc or copper salts can induce the expression
of czcCBA, czcRS, and copRS. CzcRS and CopRS are also involved in
the downregulation of OprD expression with concomitant resistance
to carbapenems (16, 493). CzcR further affects various genes involved
in virulence, including gene expression of quorum-sensing 3-oxo-
C12-HSL and C4-HSL autoinducers (386).

A. baumannii Efflux Pumps

The AdeABC, AdeFGH, and AdeIJK RND pumps are regulated by
the AdeRS system (858), AdeL repressor (547), and AdeN repres-
sor (543), respectively. While adeRS and adeL are located up-
stream of the relevant operons, adeN is found ca. 800 kbp up-
stream of adeIJK (543). Mutations in AdeS and AdeR (including

ligands (e.g., antimicrobial agents or metabolites, including quorum-sensing molecules) or be induced under various conditions (oxidative or nitrosative stress
or the presence of different agents). The ribosomal proteins L21 and L27, encoded by rplU-rpmA, indirectly upregulate ArmZ and negatively control mexXY
expression. Activation of mexXY expression also occurs through positive control by the AmgRS two-component system via the HtpX and PA5528 proteins.
Additional regulators encoded by the genes not genetically clustered with the efflux operons also participate in regulation. Mutational changes can also lead to
an inactivation of regulators (ArmR, ArmZ, MexR, NalC, NalD, MexS, and MexZ). The crystal structures of MexR and MexZ are available. AlgU is a sigma factor
required for the oxidative stress response, and its activity is controlled by Muc, the inner membrane-associated proteins involved in the production of alginate
exopolysaccharide and with their encoding genes clustered with algU. Some regulators, including AmpR, BrlR, MvaT, ParRS, and RocS2-RocA2, are involved in
the regulation of expression of other genes, e.g., downregulation of OprD by MexT and CzcR (in carbapenem resistance) or LPS modification by BrlR and ParR
(affecting polymyxin susceptibility). Certain gene products (e.g., BrlR) are involved in gene regulation in biofilm cells. See the text for detail.
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AdeS truncated by an ISAba1 insertion) are related to AdeABC
overproduction (538, 858–860). Functional mutations were
found in the conserved domains of AdeRS in AdeABC-hyperex-
pressing isolates with two mutational hot spots, one in AdeS near
His149 and another in the DNA-binding domain of AdeR (861).
Another study also identified diverse mutations in AdeRS in ex-
tensively drug-resistant isolates with the shared residue substitu-
tions of Gly186Val in AdeS and Ala136Val in AdeR (860).

Inactivation of adeN led to 5-fold adeJ overexpression with re-
sistance to aztreonam, ertapenem, meropenem, minocycline,
and tigecycline, and mutants carrying adeN mutations in the re-
gion required for dimerization of TetR-type proteins displayed
elevated levels of AdeIJK production (543), suggesting that re-
motely encoded AdeN negatively controls AdeIJK expression. The
BaeSR regulatory system was found to positively influence the
expression of the AdeA-AdeA2-AdeB system (548). Transcrip-
tional upregulation of the MFS-type transporters MdfA and
Tet(A) was observed among �200 up- or downregulated genes in
a multidrug-resistant mutant after its exposure to a subinhibitory
concentration of tigecycline (862).

S. maltophilia Efflux Pumps

Of 8 RND Sme pumps, two two-component system regulators are
linked to SmeABC and SmeYZ, while three TetR family repressors
are found for SmeDEF, SmeGH, and SmeOP. SmeABC is posi-
tively controlled by SmeSR, as is evident with the reduced MDR
due to the smeR deletion (571). Located upstream of the smeDEF
operon, smeT encodes the most studied pump repressor SmeT in
S. maltophilia (863, 864). The promoter regions of smeDEF and
smeT are overlapping, and SmeT provides negative control to
SmeDEF and its own expression. A Leu166Gln substitution in
SmeT results in higher expression levels of both smeDEF and smeT
(863). SmeT functions as a dimer, like other TetR proteins (727),
but has two extensions at the N and C termini, with a small bind-
ing pocket observed in the TetR family repressors (864). SmeDEF
overproduction was also found in an isolate with an IS1246-like
element in the smeDEF promoter where SmeT likely binds, sug-
gesting that an IS element may also influence smeDEF expression
(576). Triclosan not only selects SmeDEF-overproducing multi-
drug-resistant isolates (577) but also induces SmeDEF production
via its binding to SmeT and subsequent release from the smeT
promoter (865). Similarly, natural flavonoids bind to SmeT and
thus influence SmeDEF expression (866). While fusaric acid-in-
ducible FuaABC is positively controlled by its local regulator,
FuaR (583), another ABC-type MacABC pump was not experi-
mentally proven to be affected by the MacRS two-component sys-
tem encoded by genes divergently transcribed from macABC
(584). The MFS EmrCAB pump is downregulated by the EmrR
repressor (587).

Neisseria Efflux Pumps

Expression of the MtrCDE pump is regulated both positively and
negatively by several cis- and trans-acting elements (631). The
MtrR repressor binds to the mtrR-mtrC intergenic region and
downregulates mtrCDE expression (15, 867). MtrR also inhibits
the production of FarR, a regulator of the FarAB pump (16). (A
genome-wide microarray analysis revealed �70 genes whose ex-
pression can be repressed or activated by MtrR. One of the re-
pressed genes is rpoH, encoding a stress response sigma factor, and
as such, inducible MtrR production also increases gonococcal sus-

ceptibility to H2O2 [868].) Two AraC family regulators, the MtrA
activator and MpeR repressor, also influence MtrCDE expression
either directly or indirectly (637, 869). Several membrane-damag-
ing agents can induce MtrCDE expression through their interac-
tion with MtrA (637). This induction is also dependent on an
envelope protein, MtrF, whose expression is negatively controlled
by MtrR and MpeR (16, 869). A single-base-pair change located
120 bp upstream of the mtrC start codon generates a second pro-
moter for mtrCDE expression and is sufficient not only to increase
mtrCDE expression but also to render such expression indepen-
dent of the control by MtrR or MtrA (870).

In N. meningitidis, mtrCDE expression appears to be indepen-
dent of either MtrR or MtrA and is modulated by the Correia
repeat enclosed element (CREE) that is inserted in the regulatory
region for mtrCDE (871). This modulation involves the posttran-
scriptional regulation of the mtrCDE transcript by cleavage in the
inverted repeat of the CREE (871). The CREEs are repetitive se-
quences identified in Neisseria spp. (commonly 153 to 157 bp or
104 to 108 bp) with an inverted repeat and a characteristic core
(such as the integration host factor) that are involved in gene
regulation (872). Intriguingly, CREE deletions do not show an
effect on susceptibility to ciprofloxacin, erythromycin, and rifam-
pin (873). However, whether these deletions could affect mtrCDE
expression remains unknown.

C. jejuni Efflux Pumps

Located upstream of the cmeABC efflux operon, cmeR encodes the
TetR-type repressor CmeR that binds directly to the promoter
region of cmeABC (874). Bile salts, one type of the CmeABC sub-
strate (655), can induce cmeABC expression through their inter-
action with CmeR (875). CmeR is a pleiotropic regulator, and its
dimeric structure is unlike that of other TetR-type regulators since
it has a large center-to-center distance between two N termini of
the dimer and a large flexible multiligand-binding pocket in the
C-terminal domain (876). The crystal structure of CmeR with
bound bile acids taurocholate and cholate was obtained (877).
cmeR mutations yield elevated expression levels of CmeABC with
an MDR phenotype (878). One study also identified the negative
regulation of CmeABC by another regulator, CosR, which is in-
volved in the regulation of �90 genes, including an element of
oxidative stress defense, the catalase-encoding katA gene (879).
Induction of cmeABC expression by salicylate via its binding to
CmeR was demonstrated. Salicylate at 100 �g/ml enabled better
growth and survival of C. jejuni in the presence of inhibitory levels
of ciprofloxacin, erythromycin, novobiocin, or tetracycline and
also enhanced the emergence of fluoroquinolone resistance under
antibiotic selection pressure (880). This observation is consistent
with the effect of salicylate on the induction of MDR phenotypes
in a number of bacteria, including B. cenocepacia, B. fragilis, E.
cloacae, E. coli, K. pneumoniae, S. enterica serovar Typhimurium,
S. marcescens, S. maltophilia, S. aureus, and Mycobacterium tuber-
culosis, often through an induction of efflux pump expression
(16).

ROLE OF EFFLUX PUMPS IN BIOFILM FORMATION AND
RESISTANCE

Bacterial cells can adhere to each other or to an animate or inan-
imate surface (including that of medical devices); this function is
involved in various processes in infections and poses a major chal-
lenge to antimicrobial therapy (881). This is because biofilm cells

Li et al.

376 cmr.asm.org April 2015 Volume 28 Number 2Clinical Microbiology Reviews

http://cmr.asm.org


display significantly higher levels of resistance to antimicrobials
than do planktonic cells. Mechanisms of biofilm resistance may
involve, for example, a low growth rate, altered metabolism and
physiology, persister cells, an extracellular biofilm matrix, and an
upregulated stress response (881, 882). Since antibiotic efflux
pumps are involved in resistance and other functions, their roles
in relation to biofilm formation and resistance have been investi-
gated.

Biofilm formation occurs in response to numerous environ-
mental signals and requires specific genes and regulatory circuits.
This process involves three stages: initial attachment, maturation,
and detachment (883). The impact of drug exporters on biofilm
formation varies in different species, so P. aeruginosa mutants
deficient in or overproducing RND pumps can still form biofilms
(16, 884), while the loss or inhibition of any of 9 MDR pumps
(AcrAB, AcrD, AcrEF, MdtABC, MdsABC, EmrAB, MdfA, MdtK,
and MacAB) or the TolC OM protein in Salmonella impairs bio-
film formation with reduced production of curli (885, 886). Inter-
estingly, the biocide triclosan induces acrAB and marA expression
in Salmonella biofilm cells (887). Similarly, E. coli mutants with a
genetic deletion of one of the RND (acrAB, acrD, acrEF, mdtABC,
and mdtEF), MFS (emrAB, emrD, and emrKY), SMR (emrE), and
ABC (macAB) pump genes resulted in reduced biofilm formation
(888). Inactivation of macABC in S. maltophilia led to a 50% re-
duction in biofilm formation (584). During biofilm growth, two
uropathogenic E. coli strains showed upregulated expression of 20
transport genes, and the inclusion of an EPI, PA�N or thiorida-
zine, in the medium reduced biofilm formation in P. putida and S.
aureus (889). PA�N in combination with an iron chelator showed
synergistic activity against P. aeruginosa biofilm development
(890). Similar to the role of TolC, a plasmid encoding a TolC
homolog, AatA, promoted aggregation and biofilm formation of
an enteroaggregative E. coli isolate (891). A large conjugative plas-
mid encoding the OqxAB pump and type 3 fimbriae enabled E.
coli to form a biofilm (892). In P. putida, inactivation of an extra-
cytoplasmic function sigma factor, ECF-10, led to enhanced bio-
film formation and the upregulation of the TtgABC pump with
increased MDR (893). Upregulation of multiple proteins, includ-
ing an uncharacterized RND pump and the OmpA and CarO OM
proteins, also occurs in A. baumannii biofilms (894). However,
despite the overall positive impact of drug exporters on biofilm
formation, the inactivation of two RND pumps (i.e., RND-4,
RND-9, or both) in a B. cenocepacia strain enhanced biofilm for-
mation (615). These observations of the efflux pump’s impact on
biofilm formation may partially be attributable to the altered lev-
els of certain signaling molecules in the mutant strains.

Efflux pumps, as one of the major means of conventional an-
tibiotic resistance in planktonic cells, certainly contribute to the
survival of biofilm cells in the presence of antibiotics. For instance,
in P. aeruginosa, although still having relatively high levels of bio-
film-derived resistance, MexAB-OprM-deficient biofilm cells dis-
play lower MDR than do cells of the wild-type strain (884). Bio-
film resistance to ofloxacin (but not to ciprofloxacin) is dependent
on MexAB-OprM expression at a low ofloxacin concentration
range, and MexCD-OprJ provides a biofilm-specific mechanism
for azithromycin resistance (16). Biofilm cells include distinct
subpopulations, and resistance to colistin in metabolically active
cells is attributable to the presence of MexAB-OprM and the pmr-
mediated LPS modification (824). The survival of these active sub-
populations after exposure to membrane-targeting agents (colis-

tin and chlorhexidine) is also linked to not only MexAB-OprM
but also MexCD-OprJ and MuxABC-OpmB pumps (477). In E.
coli, the plasmid-borne TetA pump and TEM-1 �-lactamase in-
terplay in the presence of subinhibitory levels of antibiotics to
induce biofilm resistance to multiple antibiotics, and this is partly
due to the induction of the chromosomal pump EmrKY and its
regulator EvgAS (140). However, several early studies were unable
to establish an additional contribution of AcrAB or MexAB-
OprM to biofilm resistance to ciprofloxacin (16).

Recent studies with P. aeruginosa have shown the requirements
of SagS and BrlR regulatory proteins for antibiotic resistance in
biofilm cells (820, 822) and the linkage of these proteins to the
level of the second messenger c-di-GMP (823), which was identi-
fied previously as being involved in aminoglycoside-induced bio-
film formation and resistance (895). SagS is needed with at least 3
other two-component regulatory systems, BfiRS (biofilm initia-
tion), BfmRS (biofilm maturation), and MifRS (microcolony for-
mation), for the coordination of biofilm formation (822). BrlR,
which is specifically expressed in biofilm cells (820), acts as a tran-
scriptional activator for the expression of mexAB-oprM and
mexEF-oprN (819). Unlike the MerR-type regulators (e.g., BltR
and BmrR) that function in the regulation of MDR pumps of
Gram-positive bacteria (896), brlR expression is not induced by
the pump substrates. The inactivation of SagS correlates with a
reduced level of c-di-GMP, and thus, c-di-GMP is positively reg-
ulated by SagS (823). c-di-GMP further positively affects the pro-
duction of BrlR and also enhances the binding of BrlR to the
promoters of BrlR target genes (821, 823). Together, SagS, BrlR,
and c-di-GMP form an important signaling network related to the
susceptibility-resistance switch and are all required for elevated
expression in biofilm cells of the MexAB-OprM and MexEF-
OprN pumps, which contribute to resistance in both biofilm and
planktonic cells. It should be noted that similar to those in biofilm
cells, increased levels of c-di-GMP in planktonic cells also confer
elevated resistance to antibiotics to the cells, and this phenotype
correlates well with the hyperexpression of brlR, mexA, and mexE
(823). Additionally, a PA1875-PA1877-encoded efflux system in
P. aeruginosa is composed of an OM protein (OpmL), an ABC
exporter, and a membrane fusion protein (HlyD homolog) and
contributes to biofilm-specific resistance to ciprofloxacin, genta-
micin, and tobramycin (897). In a uropathogenic E. coli strain,
inactivation of the rapA gene, encoding a helicase-like protein,
does not alter biofilm formation but increases susceptibility to
penicillin G in biofilm cells. In biofilm cells of the rapA mutant,
the expression levels of 22 genes are reduced, including those en-
coding a putative MDR pump (YhcQ), a putative carbohydrate
transport and metabolism protein (YeeZ), and a transcriptional
regulator (SdiA) (898). B. fragilis cells show elevated RND pump
expression upon induction by bile salts and also increased possi-
bility of biofilm formation (899).

INVOLVEMENT OF MUTLIDRUG EFFLUX PUMPS IN OTHER
FUNCTIONS

The wide distribution and overlapping functions of MDR efflux
pumps in bacteria suggest a physiological role of these pumps
beyond drug resistance (16, 34, 52, 54, 900). Indeed, there is an
increasing understanding of the roles of multidrug pumps in bac-
terial cell communication, the stress response, fitness, coloniza-
tion, intracellular survival, and virulence, as discussed below.
However, interpretation of these results, based mostly on the
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properties of deletion mutants of acrB and its homologs, needs
some caution because such deletions are known to result in
changes in the expressions of the other remaining pumps. For
instance, the deletion of acrB in S. enterica serovar Typhimurium
results in the overproduction of AcrD and AcrF (629, 771). The
mechanism of this regulatory response is still unclear, but it may
be related to the function of AcrB (and possibly other constitu-
tively expressed RND pumps in other species) in removing toxic
intermediates of metabolism, first proposed by Helling et al. (901)
and more recently developed by Rosner and Martin (762, 902).

Bacterial Stress Responses

Increasing evidence has shown that antibiotic exporters also make
a great contribution to bacterial stress responses, where these
pumps can function as either a preexisting mechanism or an acti-
vated resource in response to numerous cellular stresses, and this
can be regarded as part of the physiological functions of drug
pumps (16, 53, 54). Antibiotics and other chemical substances
themselves can cause stress to the microbes and frequently induce
the expression of MDR pumps, which in turn increase the capacity
to resist the stress. These inducers are also often the substrates of
the relevant pumps. Thus, the response to bacterial stress is com-
plex, as demonstrated by phenomic profiling of the E. coli mutants
from the Keio collection that showed thousands of phenotypes in
response to �100 antibiotic or other drug challenges with the
involvement of a large number of transporter genes (Table 1) (30).

The expression of the predominant AcrAB pump can be stim-
ulated in response to the stress posed by bile salts/fatty acids, eth-
anol, and high salt concentrations, and this elevated level of AcrAB
production enables the survival of enteric bacterial cells against
bile salt stress in the intestinal tract (16, 55, 903, 904). The MdtEF
and EmrAB pumps are also involved in the efflux of free fatty acids
(55). A singlet MFS pump, MdtM, protects E. coli from bile salt
stress and functions with AcrAB-TolC in a synergistic manner
(905). The MATE NorM provides protection against H2O2 killing
by possibly extruding compounds that oxidize the guanine of
DNA and nucleotides as well as susceptible proteins (906). The
macrolide-specific ABC exporter MacAB in Salmonella is induced
upon exposure to H2O2 and is essential for survival of S. enterica
serovar Typhimurium against oxidative stress. Reactive oxygen
species-mediated killing in macrophages is alleviated by MacAB
(907). Both SmeIJK and MacABC of S. maltophilia also contribute
to tolerance to oxidative and envelope stresses (582, 584). In ad-
dition to the role of efflux pumps themselves in the stress re-
sponse, the levels of several pump or OM protein regulators (e.g.,
MarA, SoxS, Rob, OmpR, and EnvZ) were elevated in the presence
of antibiotic or chemical stress (908). E. coli cells with stress caused
by iron starvation showed increased expression levels of MdtF and
decreased expression levels of AcrD (16). Reduced resistance to
bile, hyperosmotic, oxidative, or nitrosative stress is evident in a K.
pneumoniae mutant with an inactivated OxyR regulator and re-
duced AcrB expression (795). An OM lipoprotein, NlpE, is in-
volved in the envelope stress response mediated by the CpxRA
signal transduction pathway, such as in response to misfolded cell
envelope proteins (909), and also positively impacts the expres-
sion of the AcrD and MdtABC pumps for providing increased
resistance (910). Similarly, a reciprocal regulation of RND pumps
and the Cpx system occurs in V. cholerae, where Cpx system acti-
vation induces the expression of VexAB-TolC and VexGH-TolC,
while the inactivation of these pumps stimulates the activation of

the Cpx response (345). The KpnEF pump in K. pneumoniae also
belongs to the Cpx cell envelope stress regulon involved in the
response to bile salt and osmotic stresses (163). BaeSR responds to
cell envelope stress (758) and regulates the expression of several
RND pumps, as discussed above (see Regulation of Multidrug
Efflux Pumps).

Several Mex pumps of P. aeruginosa (MexAB-OprM, MexCD-
OprJ, MexEF-OprN, and MexXY) clearly function in stress re-
sponses, as described above (see Regulation of Multidrug Efflux
Pumps) (Fig. 5). Their regulators (e.g., MexR, EsrC, ArmZ, and
MexT) can respond to various stresses caused by, for example,
membrane-damaging or ribosome-disrupting agents, reactive ox-
ygen species, and/or nitrosative stress and subsequently cause in-
creased activities of these pumps against the stresses (441, 454,
461, 467, 798, 799, 827, 835, 911). Consistently, P. putida RND
pump mutants are categorized into 4 functionally distinct sub-
groups, and one of them is more susceptible to oxidation-induc-
ing agents (912). In a situation mimicking chronic cystic fibrosis
infections with antibiotic therapy, oxidative stress and antibiotic
exposure result in the hyperexpression of AmrAB-OprM of Burk-
holderia vietnamiensis (913).

In Neisseria, the expression of the general stress response sigma
factor RpoH is inhibited by the repressor MtrR, and this subse-
quently impacts the expression of at least 69 RpoH-regulated
genes and the levels of gonococcal susceptibility to H2O2 (868). In
C. jejuni, an OmpR-type oxidative stress regulator, CosR, provides
overall negative regulation of oxidative stress defense proteins,
and its expression is significantly decreased by a superoxide gen-
erator, paraquat (914). Reduced production of CosR is linked to
CmeABC hyperexpression, consistent with the role of CmeABC in
responding to oxidative stress (879). The CmeG exporter from C.
jejuni also mediates oxidative defense (673).

Fitness, Colonization, and Virulence

Bacterial fitness, colonization, and virulence can be affected by
changes in the status of drug pumps and OM proteins. While
some resistant mutations may come with a substantial cost in
these measurements, others have enhanced abilities. Despite cer-
tain exceptions, it is frequently seen that either inactivation or
overproduction of an antibiotic efflux pump can add a fitness cost
or reduce virulence, suggesting that the native expression status of
the pumps may have been optimized for fitness and virulence.
However, this observation with efflux-deficient strains may be due
to the absent role of efflux pumps in responding to antibiotic
killing or stress and may not be directly linked to fitness or viru-
lence per se.

Enteric bacteria. AcrB or TolC mutants of S. enterica serovar
Typhimurium colonize and persist poorly in the intestine of
chickens (although this is likely caused by direct inhibition by bile
salts, the primary substrates of the pump) but also fail to invade
macrophages in vitro (915). MacAB-TolC of E. coli is involved in
exporting an extracellular peptide toxin (enterotoxin II) pro-
duced by enterotoxigenic E. coli (916). A Salmonella isolate with
an inactivated MacAB pump is less virulent, and a mutant defi-
cient in all drug efflux pumps is avirulent in mice (222). In E.
cloacae, inactivation of either acrA or tolC led to reduced fitness
(both in vitro and in vivo) as well as reduced virulence in a mouse
model of systemic infection (264). A deficiency in AcrAB and
OqxAB in K. pneumoniae also caused reduced virulence (792).
Similarly, a mutant of V. cholerae deficient in RND pumps pro-
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duced significantly less cholera toxin and fewer toxin-coregulated
pili (341, 344), and TolC mutants were deficient in intestinal col-
onization in mice (917) (but see the comment above on S. enterica
serovar Typhimurium). Genetic deletion of one of the five MFS
pump genes also produced a colonization defect of V. cholerae in
mice (352). Inactivation of RND pumps in V. parahaemolyticus
resulted in reduced virulence in a rabbit model (348). In H. pylori,
the CznABC metal pump is also essential for urease modulation
and gastric colonization (684). Administration of PA�N also de-
creased the colonization of C. jejuni in chickens (918). Of 9 Sal-
monella drug transporters assessed for their role in virulence, the
MdtABC, MdsABC, and MacAB pumps were required for viru-
lence (222). acrAB and acrEF mutants had an impaired ability to
cause mortality of mice by the oral route of infection (again, see
the comment above on the primary substrates of AcrAB), and a
strain deleted for all 9 pump genes did not cause mortality in mice
(222). In contrast, exposure of B. fragilis to bile salts increased, in
addition to efflux, bacterial coaggregation and adhesion to intes-
tinal epithelial cells (899). Together, these results suggest the sig-
nificance of the functional presence of efflux pumps for bacterial
fitness and virulence. Nevertheless, the establishment of a link
between efflux pumps and virulence needs to be made prudently,
since the above-described results can be due to the fact that the
major function of RND pumps in enteric bacteria is protection of
bacteria against bile salts.

In contrast, it is likely easier to see the relation between fitness
or virulence changes and pump overproduction. Tigecycline-re-
sistant E. coli strains with likely AcrAB pump overproduction or
LPS alterations have reduced fitness (919). In vitro-selected ceftri-
axone-resistant mutants of S. enterica serovar Typhimurium ex-
hibited overexpression of acrAB-tolC and reduced expression of
the invA virulence gene with decreased invasion of cultured epi-
thelial cells (920). Quinolone-resistant strains of E. coli (and P.
aeruginosa) that accumulated multiple mutations (including gy-
rase mutations and RND pump overexpression) had reduced fit-
ness, and subsequently, fitness-compensatory mutations affecting
DNA supercoiling were acquired for bacterial survival (16).

P. aeruginosa. The high prevalence of MexAB-OprM overpro-
ducers in the clinic tends to indicate that the upregulated system
does not strongly impair the pathogenicity of P. aeruginosa.
Consistent with the notion that such mutants still retain some
degree of virulence, mexAB-oprM-overexpressing strains were
isolated from patients with severe infections (385, 422, 429). A
cystic fibrosis epidemic strain overproduced MexAB-OprM (and
MexXY) and displayed enhanced virulence (921). Strains coiso-
lated from chronically colonized airways of cystic fibrosis patients
contained frequent mutations in mexR that may have resulted in
MexAB-OprM overproduction (450). Decreased virulence is as-
sociated with MuxABC-OpmB inactivation (490). However, the
outcome of P. aeruginosa infections is known to depend primarily
upon the patient’s conditions, and the contribution of bacterial
virulence is sometimes not very clear. Results of several in vitro
and in vivo experiments support the idea that nalB mutants might
have lower fitness and lower virulence than wild-type bacteria
(398, 922, 923). In agreement with this notion, it was noticed that
some epidemic nalB isolates apparently had reverted to a basal
mexAB-oprM expression level via mutations in the PI promoter or
the putative ribosome-binding site ahead of the operon (see Reg-
ulation of Multidrug Efflux Pumps, above) (412). On the other
hand, two observations tend to suggest that MexAB-OprM could

play an essential role in baseline virulence under certain condi-
tions through the export of still unidentified factors. First, the
inactivation of mexA impaired the fast killing of the worm Caeno-
rhabditis elegans and reduced the mortality rates of infected mice,
compared with wild-type bacteria (924). Second, deletion of the
whole mexAB-oprM operon appeared to compromise the inva-
siveness of P. aeruginosa, as judged by its capacity to transmigrate
across Madin-Darby canine kidney epithelial cell monolayers and
to cause lethal septicemia in mice (925). Concordant results were
obtained in this cellular monolayer model with the MexAB-
OprM-specific EPI D13-9001 (926). In line with this, it was re-
ported that during the course of chronic lung colonization, cystic
fibrosis strains tend to accumulate mutations in mexA and mexB
resulting in a functionally deficient MexAB-OprM pump (447,
927). This evolution is parallel to the loss of multiple virulence
factors and their regulators (e.g., LasR) over time by cystic fibrosis
strains (928). Such MexAB-OprM-defective mutants that also oc-
cur in patients with chronic obstructive pulmonary disease are
absent from acute infections, suggesting that the pump may
indeed contribute to pathogenicity by as-yet-uncharacterized
mechanisms.

While a rat model of acute pneumonia failed to demonstrate
lower mortality rates in animals infected with MexCD-OprJ-up-
regulated mutants than in those challenged with a wild-type or
nalB strain (929), other results suggest a negative impact of nfxB
loss-of-function mutations on bacterial fitness, all forms of motil-
ity (swarming, swimming, and twitching), and the production of
virulence factors (pyocyanin, caseinase, elastase, and type III se-
cretion system-dependent cytotoxicity) (479, 922, 930). However,
the effects of nfxB mutations on virulence factor production are
highly variable and clearly strain dependent in clinical isolates
(474). From very few clinical observations, it appears that the
emergence of nfxB isolates in vivo occurs mainly under long-term
treatment with fluoroquinolones (474), which correlates with the
ability of these agents to readily select such mutants in vitro at
concentrations around the MIC (433, 931). In the in vitro biofilm
mode of growth, nfxB mutants arise very easily under ciprofloxa-
cin exposure (932). The notion that the moderate resistance to
fluoroquinolones conferred by the pump may lead to therapeutic
failures is not always supported by animal models of infection
(sepsis and neutropenic mouse thigh models) and pharmacoki-
netic/pharmacodynamic drug parameters (933). To the best of
our knowledge, no fatal cases of infection attributable to MexCD-
OprJ-overproducing mutants were reported in the literature. Fur-
thermore, these mutants seem to be unable to cause bloodstream
infections (385, 429, 474), likely because of their high susceptibil-
ity to serum complement (934), slow growth (474), and probably
more general defects (479). The specific conditions that exist in
the cystic fibrosis lung environment might be more favorable to
the persistence of nfxB subpopulations, as the production of vir-
ulence factors and serum resistance are no longer required at the
stage of chronic colonization (928). Therefore, the debate about
the pathogenicity of these bacteria and why their prevalence in the
clinical setting is so low remains open.

Overproduction of MexEF-OprN may also have a fitness cost
and contribute to decreased survival and virulence, including im-
paired type III or VI secretion systems, which deliver toxins to the
cytoplasm of the host cells (935). In vitro-selected MexEF-OprN-
overproducing nfxC mutants are strongly deficient in the produc-
tion of major quorum sensing-dependent virulence factors such
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as pyocyanin, elastase, and rhamnolipids and thereby appear to be
avirulent in various infection models (483, 929). This correlates
with the decreased production and secretion of the Rhl signaling
molecule C4-homoserine lactone and the suppression of rhamno-
lipid-dependent swarming mobility (936, 937). Köhler et al. dem-
onstrated that the decrease in virulence factor production was due
solely to MexEF-OprM overproduction in an nfxC-type mutant
and not to pleiotropic effects induced by MexT (936). Moreover,
MexT can also downregulate type III secretion, pyocyanin
production, and early attachment to a solid surface (polystyrene)
independently of MexEF-OprN (842). Transcriptomic analysis
revealed 17 genes positively controlled by MexT apart from
mexEF-oprN (843). Lastly, c-di-GMP levels negatively affect the
expression of the OprD channel, and this explains the improved
survival of high-c-di-GMP strains in the presence of imipenem
(938).

Other bacteria. The insertional disruption of a 4-gene operon
encoding a putative toluene exporter reduces the lung persistence
of A. baumannii (939). A deficiency in the BpeAB-OprB pump of
B. pseudomallei is linked to attenuated invasiveness and cytotox-
icity toward human lung epithelial and macrophage cells (622).
BesABC of Borrelia burgdorferi is essential for virulence in mouse
infection (16). The MtrCDE pump enhances gonococcal genital
tract infection in female mice (640). Although acrAB deletion did
not significantly impact the tissue colonization of Yersinia pestis in
mouse pneumonic and septicemic plague models (333), the inac-
tivation of either of the two MarA regulatory homologs decreased
lung colonization by 10-fold in a mouse model (940). A heterodi-
meric ABC transporter, MrtAB, provides resistance to ethidium
bromide and is also required for Yersinia pseudotuberculosis to
colonize the mesenteric lymph nodes (941). However, overex-
pressed pumps can also have a biological cost such that S. malto-
philia with SmeDEF overproduction displays reduced virulence
(16). Additionally, TolC proteins constitute a major component
of multicomponent pumps and are required for virulence of a
large number of bacteria, including Aggregatibacter actinomyce-
temcomitans (an oral commensal associated with periodontitis),
Brucella suis, and Francisella tularensis (16). Finally, cell polarity in
the model species Caulobacter crescentus was linked to efflux-
based resistance, where the TipN polarity landmark protein (for
directing flagellum placement to the new cell pole) is also essential
for induced AcrAB expression (942).

MULTIDRUG EFFLUX PUMPS AS A CHALLENGE IN DRUG
DEVELOPMENT

The broad substrate profile of the major multidrug exporters, the
need for the drug to traverse the IM, and the OM permeability
barrier clearly indicate key challenges in antibiotic development
for Gram-negative bacteria (15, 16, 943–945). The second re-
quirement usually means that the drug must be made somewhat
lipophilic, and this makes the drug susceptible to multidrug efflux.
On top of this, OM penetration requires that neither the size nor
the lipophilicity of the drug can be excessive. Nevertheless, the
kinetics of AcrB (see “RND Transporters,” above) show that the
affinity and the maximal rate of transport by multidrug transport-
ers cover a very wide range, so there is hope for producing drugs
that are only poorly pumped out by prevalent RND pumps under
clinically relevant conditions. In principle, small, hydrophilic
drugs would act as nonsubstrates for multidrug efflux pumps.
However, such molecules cannot easily cross the bilayers of the IM

and usually must depend on specific (inward) transporters for
access to cytosolic targets; in this case, mutant bacterial popula-
tions lacking such transporters are likely to develop as resistant
clones. These considerations likely explain the lack of new antibi-
otic classes against Gram-negative bacilli for several decades (946,
947). New antibiotic pipelines are often available only for Gram-
positive species and those Gram-negative species lacking signifi-
cant drug efflux activity and OM barriers (944, 948, 949), and
there is a particular need for drugs against multidrug-resistant A.
baumannii and P. aeruginosa.

Ribosome-targeting omadacyclines (e.g., amadacycline), as
new broad-spectrum aminomethylcyclines, possess activity
against tetracycline-specific efflux and ribosome protection
mechanisms (950, 951) but are still rendered inactive by the
AcrAB-TolC and MexAB-OprM pumps (944). Similarly, the
broad-spectrum agent eravacycline (a new fluorocycline) also
lacks activity against A. baumannii, B. cenocepacia, and P. aerugi-
nosa (949, 952). Plazomicin is a new aminoglycoside derivative of
sisomicin with significant activity against a range of Gram-posi-
tive and Gram-negative bacteria (including multidrug-resistant
isolates) (953, 954). However, its activity is adversely affected by
increased efflux in A. baumannii and P. aeruginosa (955). More-
over, several new cephalosporin–�-lactamase–inhibitor combi-
national products in clinical trials (e.g., ceftazidime-avibactam,
ceftaroline-avibactam, and ceftolozane-tazobactam) (944) are
still likely to be the substrates of RND pumps, as are other �-lac-
tams and �-lactamase inhibitors (13, 390, 439, 545), because
avibactam cannot reverse efflux-mediated ceftazidime resistance
(956), and both ceftaroline and ceftolozane (a new antipseudo-
monal cephalosporin) are still affected by efflux pump- and/or
porin-related resistance mechanisms (although ceftolozane, con-
taining multiple charged groups, appears less impacted by Mex
pumps than many other �-lactams and did not select in vitro for
pump overproducers in P. aeruginosa, unlike other agents) (417,
957–959). These observations could also illustrate their reduced
or lack of synergistic activity against multidrug-resistant A. bau-
mannii and P. aeruginosa (960–962). Additionally, a target-based
inhibitor of LpxC (a metalloamidase involved in LPS biosynthe-
sis), CHIR-090, is also a substrate for MexAB-OprM, MexCD-
OprJ, and MexEF-OprN (963).

In spite of their synthetic nature, (fluoro)quinolones are often
the typical substrates of MDR pumps. The activity spectrum pro-
files of several newer quinolones in clinical trials (e.g., the fluoro-
quinolones delafloxacin, finafloxacin, and JNJ-Q2; the nonfluori-
nated quinolone nemonoxacin; and an isothiazoloquinolone,
ACH-702) (944, 964–968) suggest that these agents are substrates
of RND pumps. Nevertheless, although still a substrate of the A.
baumannii AdeABC and AdeM pumps, a new broad-spectrum
fluoroquinolone, DS-8587, was found to have better activity
against AdeABC- or AdeM-overproducing mutants than cipro-
floxacin and levofloxacin (969), further supported by its efficacy
in an animal model (970).

Newer ketolides (e.g., cethromycin and solithromycin) and
oxazolidinones (posizolid, radezolid, and tedizolid) are still the
agents mainly against Gram-positive bacteria (944), and the lack
of potency for Gram-negative bacilli is likely attributable to drug
efflux and the OM permeability barrier, as shown with earlier
members of their classes (85, 242, 266, 971). For example, soli-
thromycin is clearly a strong substrate for three pumps, MtrCDE,
MacAB, and NorM, of different transporter families (647). Again,
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these characteristics continue to show the need to specifically de-
velop small-molecule inhibitors of RND pumps. Indeed, RND
pump inhibition rendered an FtsZ-directed antistaphylococcal
prodrug (TXY436) active in vitro against E. coli, K. pneumoniae,
and A. baumannii (972).

Additionally, it should be emphasized that the increasing un-
derstanding of multidrug transporters certainly facilitates antibi-
otic discovery and development (16, 36). Hypersusceptible mu-
tants deficient in major RND pumps and/or LPS (9, 22, 27, 164,
177, 390) can often be best used as model organisms for screening
potential agents against Gram-positive and Gram-negative organ-
isms.

EFFLUX PUMP INHIBITORS

Active drug efflux, especially that caused by the RND pumps, plays
a major role in intrinsic resistance and elevated resistance (in
pump overproducers) in Gram-negative bacteria. Thus, if such
pumps can now be antagonized by an inhibitor, this may open up
a wide possibility of adjuvant therapy. Practically all antibiotics are
susceptible to active efflux, and for many, their utility has become
limited because of the overproduction of pumps in pathogens.
Such inhibitors can make these “old” antibiotics effective again.
Furthermore, when we consider that a wide range of antibacterial
agents (including lipophilic penicillins, many macrolides, glyco-
peptides, oxazolidinones, lipoglycopeptides, and the lipopeptide
daptomycin) are useful only for treating Gram-positive pathogens
and that their poor activity against Gram-negative organisms is
caused at least partially by efflux, EPIs could broaden dramatically
the spectrum of these agents. Finally, it is important to note that in
Salmonella and in other organisms, EPIs were shown to inhibit
biofilm formation, which is integral in pathogenesis and requires
the presence of RND pumps (886, 889); this gives even more in-
centive for the development of clinically useful EPIs.

EPIs have been used widely in order to determine if drug resis-
tance in clinical isolates is caused by efflux. However, in some
cases, the inhibitors were used under inappropriate conditions
(most often too-high concentrations), so interpretation of the re-
sults becomes difficult (see also Methodological Considerations,
below).

PA�N

Reserpine and verapamil, known inhibitors of P-glycoprotein,
were examined in 1991 as potential inhibitors of the Gram-posi-
tive pump NorA of S. aureus and were indeed found to inhibit this
bacterial transporter (973). Thus, there was a precedent for an
EPI. Nevertheless, as detailed by Neyfakh for the NorA homolog
Bmr of Bacillus subtilis (59), these Gram-positive MFS transport-
ers pump out mostly fluoroquinolones (which contain a positively
charged piperazine moiety) and other cationic compounds, such
as doxorubicin, puromycin, cationic dyes, and even the polyamine
spermidine. Therefore, it was possible to imagine that the inhibi-
tors, also containing cationic groups, would bind to more or less
similar binding sites as the substrates. In contrast, Gram-negative
RND pumps, such as MexB and AcrB, have a much wider sub-
strate specificity (Table 2) and transport not only the substrates
mentioned above but also neutral compounds (chloramphenicol
and solvents) and acidic ones (�-lactams). Many researchers
thought that it would not be possible to find inhibitors of such
pumps, and in this context, the discovery of PA�N (MC-207,110;
446 Da; reported in 2001 by scientists at Microcide [60]) (Fig. 6)

was quite remarkable. This compound was found to be a broad-
spectrum inhibitor of three major RND pumps in P. aeruginosa,
MexAB-OprM, MexCD-OprJ, and MexEF-OprN, for the efflux of
fluoroquinolones and was also found to inhibit the E. coli AcrAB-
TolC pump. At 20 �g/ml, it strongly decreased the MICs of a wide
range of antibiotics in a MexAB-OprM-overproducing P. aerugi-
nosa strain: those for chloramphenicol, sparfloxacin, erythromy-
cin, and levofloxacin decreased 128-, 128-, 32-, and 32-fold, re-
spectively. On the other hand, MICs of carbenicillin, tetracycline,
and ethidium bromide showed only a marginal decrease (�8-
fold), although the genetic inactivation of MexAB-OprM caused a
huge decrease of the MIC for them (between 32- and 512-fold).
Thus, the effectiveness of this inhibitor depends strongly on the
nature of the antibiotic, an observation that suggests, for example,
that the drugs and the inhibitor may or may not share the same
subsite within the binding pocket of the transporter (60). Re-
cently, some substrates of AcrB, such as chloramphenicol, ben-
zene, and cyclohexane, were shown to stimulate the efflux of
nitrocefin and cefamandole (94), rather than the expected com-
petitive inhibition, and this observation may also be related to the
presence of subsites and to the complexity of the drug extrusion
process in the giant AcrB transporter.

Lomovskaya and colleagues (60) also showed that PA�N is a
substrate of these pumps and therefore that their inhibitory action
is likely the result of competition in the transport process. PA�N is
not a proton conductor. Additionally, as expected for lipophilic
peptides containing more than one cationic site, PA�N does per-
meate the P. aeruginosa OM at high concentrations, especially in
strains with defective efflux. However, half-maximal permeation
required a concentration of 70 �g/ml even in these cases, and this
activity was completely abolished in the presence of 1 mM Mg2�

in the medium (60). The latter points are worth emphasizing be-
cause there are recent publications suggesting that the OM-per-
meating function explains most or even all of the antibiotic-sen-
sitizing activity of PA�N. Matsumoto et al. (974) found that OM
permeability, assayed by nitrocefin hydrolysis in �tolC cells of E.
coli, became increased by PA�N, with the half-maximal increase
occurring at �16 �g/ml. The assay was conducted in the absence
of Mg2�, and the cells may already have been damaged because
they contained a high-copy-number plasmid and were grown in
the presence of 100 �g/ml ampicillin for the maintenance of the
plasmid. Those authors also found that the cells became stained
more by Sytox green dye at high concentrations of PA�N and took
this as evidence of the permeabilization of the OM. In any case,
there seems to be a huge leap from these results to the conclusion
that the effect of PA�N is caused mainly by membrane permeabi-
lization. More recently, Lamers et al. (975) showed that a P.
aeruginosa mutant derepressed for the production of endogenous
�-lactamase leaked out more enzyme into medium when rela-
tively high concentrations (25 to 50 �g/ml) of PA�N were added.
As shown by Lomovskaya et al. (60), Mg2� prevented the permea-
bilization of the OM; however, this was observed at low concen-
trations but not at high concentrations of PA�N. Lamers et al.
examined the entry of 8-anilino-1-naphthalenesulfonic acid as a
marker of OM permeability and found that it was increased in the
efflux-deficient mutant only with 50 �g/ml PA�N. Finally, those
authors showed that the fluorescence of a cyanine dye was in-
creased in the presence of 25 and 50 �g/ml PA�N and concluded
that the IM became depolarized (975). However, because there
was no calibration, it is impossible to tell if the “depolarization”
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FIG 6 Chemical structures of RND pump inhibitors.
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was of a magnitude significant for bacterial physiology. These au-
thors (975) found significant effects usually only at high concen-
trations, and these observations are quite consistent with the ini-
tial characterization of PA�N (60). Thus, it is important to
interpret the permeabilizing effect of PA�N on the OM in the
context of both PA�N concentrations and the specific bacterial
strains or species (as noted above, the MIC values of PA�N for
different strains of the same species and different species may
vary). The molecular basis of pump inhibition by PA�N was ex-
amined by exploring its mode of binding to the binding protomer
of AcrB via MD simulation (93) and is discussed together with the
mode of action of NMP below. (Although ethidium influx rates at
different concentrations of PA�N have been used to calculate the
Km and Vmax [976], these values have little credibility because such
simplistic calculations cannot be applied to a complex system,
where spontaneous influx, decreased by the activity of the pump,
is measured rather than the pump activity itself.)

One important effect of inhibitors, established with PA�N, was
that their presence dramatically decreases the frequency of emer-
gence of resistant mutants, presumably because the concentration
of the drug is so far above the MIC all the time (60). Thus, when a
wild-type P. aeruginosa strain was plated onto agar with 1 �g/ml
levofloxacin (8-fold MIC), resistant mutants appeared at a fre-
quency of 10	7; if 20 �g/ml PA�N was added to the drug, the
frequency of appearance of resistant mutants was decreased to
only 10	11.

Although the PA�N structure has been modified to decrease
acute toxicity to a tolerable level, the presence of two cationic
groups led to prolonged accumulation in tissues (presumably in
acidic vesicles) and prevented repeated dosing (977). This struc-
tural feature was also likely to cause renal toxicity, and thus, the
development of this series was abandoned (978). Again, the issue
of toxicity is a complex one, and it is unfortunate that researchers
now trying to develop new classes of inhibitors are often focused
on acute toxicity data alone. In this regard, one may also consider
the inhibitory spectrum (broad or narrow) of an EPI as well as the
clinical situations where the EPI would be administered as an
antibiotic adjuvant.

NMP

The second compound that has been used widely in the laboratory
is NMP (226 Da) (Fig. 6), discovered by the examination of a series
of aryl piperazines by Bohnert and Kern (979). Its activity is some-
what weaker than that of PA�N, requiring 50 �g/ml to decrease
the levofloxacin MIC for an AcrB-overproducing E. coli strain.
Interestingly, the activities of NMP and PA�N were quite different
in their specificity (980). Thus, NMP was very effective in making
E. coli clinical isolates more susceptible to ethidium bromide, for
which PA�N had no effect. In contrast, NMP had no effect on
susceptibility to rifampin and clarithromycin, for which PA�N
showed a strong effect at 25 �g/ml (980). Because NMP is likely to
act as a serotonin agonist, it is said to be unlikely to be developed
into a clinically useful drug (981).

The molecular basis of inhibition by NMP and PA�N was in-
vestigated by MD simulation using the binding protomer of AcrB
(93). We first noticed that neither PA�N nor NMP bound excep-
tionally tightly to the AcrB-binding site; the calculated affinity was
in the range of, or even weaker than, that of the typical substrates.
This is an observation consistent with our knowledge that these
inhibitors can behave as substrates and are pumped out by AcrB
(60, 979). As shown in Fig. 7, the typical substrate minocycline
bound to the upper subsite within the binding pocket, which is full
of hydrophilic residues such as S48, Q151, S180, N274, and D276,
and only F178 and F615 were close to the substrate among the six
Phe residues lining the pocket. In contrast, both PA�N and NMP
bound to the lower part of the pocket that is rich in Phe residues.
Thus, PA�N interacted with F136, F178, F615, and F628, and the
only hydrophilic residues found nearby were Q176 and E673.
NMP interacts with F617, F664, and F666, and no hydrophilic
residue is found nearby (except perhaps G675). It may be impor-
tant that although the docking predicted that both inhibitors
bound to the binding site just like the substrate, MD simulation
showed that they both moved out of the pocket in the direction of
the proximal pocket and ended up straddling the G-loop (also
called the F617 loop [78] or switch loop [77]). Since the G-loop is
thought to play a critical role in allowing the movement of sub-

FIG 7 MD simulation-predicted binding of the inhibitors PA�N and NMP, with the substrate minocycline shown as a reference. The positions of ligands initially
predicted by docking (Autodock Vina) are shown as thin gray sticks, and those in the final phase of MD simulation are shown as thick blue sticks. AcrB residues
within 3.5 Å of the ligand are shown in stick models (red, green, or yellow, if they belong to the distal pocket, proximal pocket, or G-loop, respectively). For NMP,
two somewhat different equilibrium positions were obtained, and only one is shown here. (Modified from reference 93.)
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strates from the proximal to the distal pocket, one possibility was
thought to be that the straddling of the G-loop and the interfer-
ence in substrate movement might explain the action of metabo-
lites. (However, an alternative interpretation now appears more
likely [see below].) A recent study using random mutagenesis of E.
coli AcrB identified certain residues near the outer face of the distal
substrate-binding pocket (such as G141, N282, A279, and G288)
for efflux inhibition by NMP (982).

D13-9001

The Daiichi-Microcide collaboration that produced PA�N con-
tinued to produce MexB-specific inhibitors, and one of the final
products was D13-9001, a relatively large (669-Da) (Fig. 6) pyri-
dopyrimidine compound (983), which decreased the levofloxacin
MIC 8-fold at 2 �g/ml in P. aeruginosa. This compound is also
important because it was cocrystallized with MexB and AcrB (75).
In that work, the authors showed that D13-9001 is neither a sub-
strate of AcrB nor pumped out by the transporter. Moreover, by
using purified AcrB and MexB for isothermal titration calorime-
try, those authors showed that the inhibitor was bound tightly by
the transporter, with a dissociation constant of �1 �M. When the
binding energy was calculated from the crystal structure, it was
	11.2 kcal/mol for the inhibitor, which can be compared with the
much weaker binding (	5.6 kcal/mol) for a typical substrate, mi-
nocycline. The crystal structure revealed that the lipophilic por-
tion of this large inhibitor (tert-butylthiazolyl aminocarboxyl
pyridopyrimidine) is bound to the bottom of the distal binding
pocket and is surrounded by F136, F178, F610, F615, and F628,
called a “hydrophobic trap” by those authors. In contrast, the

hydrophilic parts of the inhibitor (the piperidine acetoaminoeth-
ylene ammonioacetate moiety as well as the tetrazole group) are
bound to the upper, groove-like portion of the binding pocket and
interact with many less-lipophilic side chains (Fig. 8). This struc-
ture then explains the molecular basis of pump inhibition by this
agent. First, the bound agent prevents the binding of other sub-
strates to the upper part of the binding pocket. Indeed, purified
AcrB bound much less minocycline in the presence of D13-9001
(75). Second, even if the drugs bind to a subsite that does not
overlap the inhibitor, the tight binding of the inhibitor will pre-
vent the conformational changes needed for drug efflux through
the functional rotation mechanism. Lastly, we note the fact that
D13-9001 was effective in inhibiting efflux in intact cells of P.
aeruginosa (983), although it is essentially a neutral compound
and is unlikely to perturb the OM. However, the two P. aerugi-
nosa-active EPIs, PA�N and D13-9001, contain multiple charged
groups and may thus traverse the OM through one of the specific
channels, allowing the influx of basic amino acids, peptides, and
even some acidic compounds (984).

MBX2391

The pyranopyridine derivative MBX2391, recently developed by
Microbiotix, is a strong inhibitor of the AcrB pump in Enterobac-
teriaceae (95). It is a relatively small (410-Da) (Fig. 6) neutral
molecule and shows activity at very low concentrations. In a kill-
ing assay with E. coli with a minimally bactericidal concentration
of ciprofloxacin, even 0.19 �M (0.08 �g/ml) the inhibitor in-
creased killing significantly, and in the presence of 3 �M (1.2
�g/ml), 99.99% killing was achieved in 4 h, whereas ciprofloxacin

FIG 8 Binding of various inhibitors determined by MD simulation. Although the binding of PA�N and NMP was examined previously (93), the simulation
process was extended to �300 ns. The orange surface shows the distal binding pocket (defined previously [91]), and the inhibitor molecules are shown in sticks
with CPK colors. AcrB is shown in green cartoon models, and the part closer to the viewer was removed for clarity. This figure was drawn by using the program
Pymol, on the basis of data reported previously (96).
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alone caused no killing at all. In a nitrocefin efflux assay using
intact E. coli cells, this inhibitor at 0.2 �M produced a clear inhi-
bition with a strong increase of the Km. In contrast, much higher
concentrations of PA�N could not produce clear signs of inhibi-
tion.

Some of us recently examined the binding of MBX2319 to AcrB
by MD simulation (96). In this work, we also examined the bind-
ing of other inhibitors by the same method. First, we noted that
D13-9001 and MBX2319 bound more tightly (	18.2 and 	12.5
kcal/mol) than the typical substrate minocycline (	7.2 kcal/mol).
D13-9001 bound to AcrB in exactly the same position as that
shown previously by X-ray crystallography (75), confirming the
reliability of our approach. MBX2319 interestingly also bound to
the bottom of the distal binding pocket, or the hydrophobic trap,
just like the hydrophobic portion of D13-9001. However, because
MBX2319 does not have the hydrophilic side chains of D13-9001,
the upper portion of the pocket, where exported drugs usually
bind, is not occupied (Fig. 8).

Examination of Fig. 8 suggests furthermore that the upper
“groove” portion of the binding pocket becomes closed upon the
binding of MBX2319, PA�N, and NMP and occluded by the bind-
ing of the hydrophilic parts of D13-9001. Indeed, the docking of
minocycline to the inhibitor-AcrB complexes showed that it is
impossible for minocycline to bind to any subsite within the bind-
ing pocket (96). This observation then suggests the hypothesis
most likely at present: the binding of inhibitors distorts the bind-
ing pocket so that the binding of substrates becomes difficult.
Although our earlier hypothesis of interference with the G-loop
cannot be totally discarded, this interpretation clearly does not
apply to MBX2319, as it binds away from the G-loop, unlike
PA�N or NMP (Fig. 8). Although MBX2319 does not inhibit ef-
flux in P. aeruginosa, this is most likely due to its poor penetration
across the OM, as it lacks any charged groups and cannot utilize
common specific channels. Indeed, efflux inhibition was seen
once P. aeruginosa OM permeability was increased by the simul-
taneous application of polymyxin B nonapeptide (T. J. Opper-
man, personal communication).

Other Compounds That Inhibit RND Pumps

Many other types of compounds have been investigated as poten-
tial EPIs and reviewed (16, 981, 985–987). Quinoline and pyrido-
quinoline derivatives were investigated as inhibitors of E. aero-
genes AcrAB by the Pagès group (988). The compound showing
the highest activity, 2,8-dimethyl-4-(2=-pyrrolidinoethyloxy)quino-
line (Fig. 6), reversed chloramphenicol and norfloxacin resistance of
clinical isolates substantially; however, it had to be used at a high
concentration of 1 mM (989). The same group reported later that the
derivatives of 7-chloroquinoline were more potent (1030).

Pharmacia scientists reported that arylpiperidines, such as
2-fluoro-3-(2-chloro-5-bromo-phenylethyl)piperidine (Fig. 6),
were capable of inhibiting AcrAB and decreasing linezolid MICs
in E. coli at a concentration of 100 �M (990). The Bohnert-Kern
group, who discovered NMP as an inhibitor, examined other
compounds with an arylpiperidine structure and found that
pimozide (Fig. 6) inhibited AcrAB function strongly when Nile
red efflux or ethidium influx assays were used but had little effect
on the MICs of conventional antibiotics, presumably because its
inhibitory action was substrate specific (991). Those researchers
found that a selective serotonin reuptake inhibitor, sertraline
(Fig. 6), decreased the tetracycline, clarithromycin, and linezolid

MICs at 100 �M but had a much smaller effect on oxacillin MICs
(992).

Another group of compounds is phenothiazines (Fig. 6), in-
cluding chlorpromazine. These compounds were reported in 1997
to decrease drug resistance in E. coli (993), but it was unclear if the
mechanism involved inhibition of the pump, because those au-
thors showed that phenothiazine derivatives eliminated R plas-
mids. However, in 2003, Kaatz and others (994) demonstrated
that these compounds decrease the MICs of several agents in S.
aureus, presumably by inhibiting MFS pumps, although there was
a small decrease in membrane potential. A phenothiazine, thior-
idazine, was found to inhibit the presumably AcrB-catalyzed ef-
flux of ethidium in E. coli at a concentration of 15 �g/ml (995),
and similar activity was seen with chlorpromazine (996). Recently,
40 new phenothiazine derivatives were tested with E. coli, and
some appeared to inhibit AcrB significantly on the basis of
ethidium accumulation assays (997). Still, strangely, the com-
pounds were not effective against S. enterica serovar Enteritidis,
and it is unclear which one of the three listed Salmonella strains
was used for the assay. Moreover, none of the identified com-
pounds could potentiate susceptibility of AcrAB-overproducing
E. coli or S. enterica serovar Enteritidis. Additionally, certain poly-
amino geranic derivatives at a concentration range of 0.03 to 0.25
mM were able to decrease, by possible efflux inhibition, MIC val-
ues of chloramphenicol and nalidixic acid against E. aerogenes and
Salmonella 2- to 64-fold (998). When the structures of these com-
pounds are examined (Fig. 6), it is curious that most of the inhibitors
contain a hydrophobic polycyclic core, which is likely to be bound in
the hydrophobic pocket of the AcrB-binding site. Thus, all inhibitors
might share a mode of binding to the transporter protein.

Martins et al. also reported a study in which verapamil (40 to
80 �g/ml) was seen to inhibit the efflux of ethidium at pH 8 in
E. coli (999). The effect was seen to decrease in the presence of glu-
cose, a result that led those authors to the very unlikely conclusion
that ABC transporters, suggested to be MsbA without any evidence,
were responsible for drug efflux at this pH. It should be noted that
glucose also generates proton motive force and not only ATP.

Plant extracts often contain EPIs (mostly for pumps of Gram-
positive bacteria), and the literature up to 2007 was reviewed pre-
viously (1000). Extracts of some plants were found to inhibit the
AcrAB pump (1000), but this observation does not appear to have
been followed up. Extracts from the genus Berberis are especially
known to contain inhibitors of staphylococcal NorA (15). Extracts
of such plants decreased ciprofloxacin MICs drastically, especially
in highly ciprofloxacin-resistant strains of E. coli and P. aerugi-
nosa, where efflux is likely to play a major role (16). Li et al. found
that artesunate, a derivative of artemisinin (used against malaria),
potentiated �-lactam activities against E. coli and increased cell
accumulation of daunorubicin, possibly through its inhibition of
acrAB-tolC expression (1001). However, artesunate concentra-
tions required for such inhibition were quite high, in the range of
32 to 512 �g/ml. Similar to early observations (16), plant extracts
containing alkaloids, flavonoids, phenols, triterpenes, and sterols
potentiated antibiotic activity against multidrug-resistant E. coli,
E. aerogenes, K. pneumoniae, and P. aeruginosa, with 2- to 8-fold
decreases in MICs of certain antibiotics tested (but antagonistic
effects were also observed with some combinations) (1002). Sci-
entists at Microcide reported that the fermentation product of
Streptomyces spp. contained two polycyclic compounds that
showed strong potentiation of levofloxacin activity against the P.
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aeruginosa MexAB-OprM system (reviewed in reference 15). Re-
cently, a gallotannin, 1,2,6-tri-O-galloyl-�-D-glucopyranose from
Terminalia chebula fruit, was revealed to potentiate antibiotic ac-
tivity against multidrug-resistant uropathogenic E. coli, at least
partly attributed to its inhibitory effect on efflux pumps (1003).
Two compounds derived from human serum increased the accu-
mulation of ethidium bromide and minocycline in A. baumannii
cells and potentiated activity of several antibiotics against A. bau-
mannii and P. aeruginosa (1004).

Finally, it should be mentioned that proton conductors such as

CCCP are sometimes loosely called inhibitors in the literature.
However, they simply abolish the energy source, the proton mo-
tive force, for the pump function and do nothing to the pump per
se. Furthermore, they are so extremely toxic that there is no chance
that they could become drugs. Thus, such compounds have no
place in the discussion of pump inhibitors.

METHODOLOGICAL CONSIDERATIONS

The availability of a large amount of bacterial genome data and the
rapid development of technology in biochemistry and molecular

TABLE 5 Methodological considerations for detection and characterization of drug efflux pumps

Method Consideration(s) References

Microbiological
Antimicrobial susceptibility

testing  EPI
Can be a routine assay 60, 346, 550, 553, 630, 989
Used for development of novel antibacterials
Requires appropriate EPI and needs to rule out nonefflux inhibitory effects of the EPI
Unable to provide identity of the pumps

Genetic and molecular
PCR Readily carried out and widely used 528, 1022, 1023

Can largely screen the distribution of efflux genes
Multiplex PCR can be used for identifying multiple resistance determinants
Requires sequences of the pump genes

RT-PCR Readily carried out (qualitative and quantitative) and widely used 199, 200, 380, 381, 383, 385, 413,
417, 420–422, 451, 502, 531,
572, 573, 628, 668, 1024–1027

Can link gene expression with resistance phenotype (without or with an EPI)
Can assess the impact of factors (e.g., induction) on pump expression
Requires purification of RNA and that there is no DNA contamination
Requires sequences of the pump genes
Requires appropriate controls (e.g., a housekeeping gene) for comparison

Cloning and expression in
native and/or exogenous
host and mutational
analysis of efflux
components

Can be used for determining the function and substrate specificity (including identification
of important residues of pump components)

82, 306, 489, 560, 623

Drug efflux pump-deficient hypersusceptible E. coli can often be used as a host
Requires appropriate expression vector and host
Overexpression of a pump may be toxic to the host

Genetic inactivation Can be used to assess the role of a specific pump in intrinsic and acquired resistance when
combined with susceptibility testing

10, 13, 27, 28, 30, 164, 560, 574,
623

Can be used to assess the role of pumps beyond drug resistance (e.g., biofilm formation,
stress response, fitness, and virulence)

Can be used to study pump regulation
Requires appropriate methods to construct mutants

Genomic/proteomic
analysis including a
microarray assay

Used to determine the distribution of various classes of pumps, including putative drug
pumps and other resistance determinants

496, 500, 534, 570, 615

Microarray assay may compare a large no. of efflux pump genes and nonefflux genes
May not reveal a function and needs experimental approaches for confirmation
Requires certain instrument facilities

Biochemical
Cell-based drug

accumulation or uptake
assay

Can be readily carried out 9, 11–13, 60–63, 465, 563
Can be developed for high-throughput screening methods for searching for novel

antimicrobials and EPIs
May be used to measure steady-state drug levels
May be used for transport kinetic studies
Requires the substrates to be traceable, such as radiolabeled or fluorescent substrates
An ionophore proton conductor, CCCP, has often been used

Membrane vesicles Can be used to demonstrate the efflux process 133, 1028
Require delicate experimental conditions (e.g., French cell press and radiolabeled substrates)
Not widely used and mostly demonstrated in E. coli with certain pumps

Liposome reconstitution
transport

Can be used to demonstrate the efflux process 23, 57, 142, 1028
Requires expression and purification of efflux protein components

Immunoblot assay Confirms the presence of pumps 483, 628, 1027
Quantifies pump expression
Used to study pump component interactions
Requires pump component-specific antibodies

Structural studies Determines molecular and biochemical basis of efflux pumps and drug-pump interactions 66–68, 70, 74, 75, 91, 93, 114,
166Used to search for novel antimicrobials and EPIs

Requires delicate biochemical experimental conditions for studying crystal structures
Computer simulations can also be used
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biology have facilitated research for understanding the signifi-
cance of drug transporters in antibiotic resistance. To date, vari-
ous molecular and biochemical approaches have been used to
detect and characterize the contribution of efflux pumps to resis-
tance. Table 5 provides a summary of the methodological consid-
erations for these methods. Some approaches have been discussed
in different sections above. Here we discuss the application of
antimicrobial susceptibility testing (AST) for studying efflux-me-
diated resistance.

From a clinical microbiology perspective, routine AST con-
ducted with intact cells in the presence and absence of a known
EPI may provide a good indication regarding the likely involve-
ment of efflux pumps in resistance. Indeed, given the simplicity of
AST, numerous such studies have been undertaken with clinical
isolates (Table 5). However, it is of critical importance to prede-
termine the appropriate concentrations of an EPI and other test-
ing conditions in order to rule out the contribution of nonefflux
processes, since even a subinhibitory concentration of an EPI may
exert its impact on bacterial growth.

An example for carefully assessing EPIs and establishing crite-
ria for EPIs is the characterization of PA�N (60). This should
bring much attention because PA�N has frequently been used as a
classical EPI of RND pumps, yet the OM-permeabilizing effect of
this agent at high levels may have often been ignored. Moreover,
regardless of its mode of action, the potential antibacterial activity
of an EPI itself should not be underestimated in combinational
AST studies. Either membrane-permeabilizing agents or EPIs
could increase antibiotic susceptibility. The MIC values of PA�N
against E. coli and P. aeruginosa of different RND pump back-
grounds vary, with a range of 32 to 512 �g/ml (60, 974). Thus,
studies with carelessly chosen concentrations may inappropriately
estimate the role of efflux mechanisms in clinical isolates. Consis-
tent with its nature as a dipeptide amide with two positive charges
at physiological pH, PA�N has been noted since its discovery for
its membrane-permeabilizing effect (particularly in the absence of
a functional MexAB-OprM pump) at a level of 16 �g/ml, espe-
cially in Mg2�-poor media (60, 1005). In combinational studies
with antibiotics, PA�N has often been used at concentrations of
�20 �g/ml (Table 5) (60, 550, 1005). Several more recent studies
have also highlighted such OM-permeabilizing effects (974, 975,
1006, 1007), although their conclusions need to be examined care-
fully, as discussed above (see Efflux Pump Inhibitors). In Burk-
holderia spp., PA�N at a concentration of up to 200 �g/ml was
considered most effective as an EPI (627, 1005). With this high
level, its impact on OM permeability should be investigated.
Moreover, PA�N at 200 �g/ml induced the expression of AmrAB-
OprA and BpeAB-OprB of B. thailandensis (627), and this requires
further study regarding the interplay between RND pumps and
PA�N.

The literature is unfortunately full of examples of indiscrimi-
nate uses of EPIs for assessing the efflux status of both Gram-
positive and Gram-negative bacteria. To date, there are more
potential EPIs identified for Gram-positive bacteria than for
Gram-negative bacteria (16). However, the results obtained with a
typical EPI for Gram-positive bacteria such as reserpine for inhib-
iting RND pumps of Gram-negative bacteria remain to be further
assessed (1008, 1009). Hence, caution should be taken in the se-
lection of appropriate EPIs. In this regard, guidance documents
for conducting AST or analyzing resistance mechanisms in clinical
laboratory settings are available, for example, for �-lactamase

identification. However, despite numerous studies using AST in
the presence and absence of EPIs with clinical isolates, there are
currently no guidelines regarding the choice of appropriate EPIs,
the selection of their proper concentrations, and other testing
conditions (e.g., standard isolates with known efflux status, me-
dia, and quality control). Such a standardized method can be ap-
plied together with other approaches (Table 5), particularly the
RT-qPCR technique, to characterize efflux-mediated drug resis-
tance in clinical isolates.

CONCLUSIONS

Over the past 2 decades, impressive advances in science and tech-
nology have revolutionized our understanding of the significant
role that multidrug efflux pumps play in multidrug-resistant
Gram-negative bacteria. These pumps have been characterized in
a large number of human and animal pathogens, as described in
this review. Through numerous studies targeting RND-type
AcrAB-TolC and Mex pumps, we have obtained an in-depth un-
derstanding of the structural and biochemical basis of both trans-
port mechanisms and substrate profiles of MDR pumps as well as
their role in and beyond antibiotic resistance. A better under-
standing of pump regulation as well as synergistic interactions
between these pumps and other resistance mechanisms could pro-
vide promising targets for drug discovery. However, even with our
appreciation of efflux pumps in MDR, we are still facing chal-
lenges in developing novel antibiotics that can bypass the effects of
MDR pumps and clinically useful EPIs. Meanwhile, for clinical
microbiologists, standardized methods that can readily identify
both genotypic and phenotypic contributions of these pumps to
MDR in clinical isolates should be established and validated. Fur-
thermore, the broad substrate specificity of these pumps and the
rapid selection of pump-overproducing isolates during clinical
therapy illustrate the importance of antibiotic stewardship by op-
timizing antibiotic use and reducing antibiotic overuse.
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ADDENDUM IN PROOF

A new family of drug efflux transporters was recently reported
(K. A. Hassan, Q. Liu, P. J. F. Henderson, and I. T. Paulsen, mBio
6:e01982-14, 2015, http://dx.doi.org/10.1128/mBio.01982-14).
Also, a recent report describes the synthesis of derivatives of
MBX2319, some of which are 30 times more potent than the orig-
inal inhibitor, based on the potentiation of levofloxacin and pip-
eracillin (S. T. Nguyen et al., Bioorg Med Chem, in press). Finally,
Blair et al. discovered that AcrB protein of Salmonella Typhimu-
rium from a patient treated with ciprofloxacin had a single amino
acid substitution at the binding site, which made the pump more
effective for fluoroquinolones and less effective for other antibi-
otics (J. M. A. Blair et al., Proc Natl Acad Sci U S A, in press,
http://dx.doi.org/10.1073/pnas.1419939112).
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